Skip to content

📝 update the result of sycamore-n53 m12, m14, m16, m20 #103

@Yonv1943

Description

@Yonv1943

result: 以下的结果都需要+log10(2) ,可以参考以下讨论:
#102 (comment)

sycamore Result1 Result2 NumSamples UsedTime
n53 m12 15.478 16.449 185856 56930
n53 m14 16.610 17.748 173568 54152
n53 m16 22.014 32.511 153088 52947
n53 m18
n53 m20 21.782 22.585 148992 58058

sycamore n53 m12

      228       22.789    2.196e+01    TimeUsed     54169
      232       24.986    2.228e+01    TimeUsed     55085
      236       25.889    2.051e+01    TimeUsed     56010
      240       20.804    1.967e+01    TimeUsed     56930
| buffer.save_or_load_history(): Save ./task_TNCO_00/replay_buffer_states.pth    torch.Size([185856, 414])
| buffer.save_or_load_history(): Save ./task_TNCO_00/replay_buffer_scores.pth    torch.Size([185856, 1])

min_score:    15.478
avg_score:    24.392 ±     4.663
max_score:    49.068
best_result:
tensor([235, 371, 215, 137, 246,  62, 320, 178, 147, 325,  31,  17, 274, 333,
        234, 389, 142,  49, 311, 351, 271, 218,  89, 121,  96, 401,  25, 230,
          8, 369, 350, 257, 318, 248, 229, 236,  52,  14, 292, 139, 383, 343,
        207, 195, 209,  47, 394, 355, 329, 149,  53, 130, 372, 398, 273, 339,
        278, 314, 298,  28, 206,  98, 384,  74, 217, 256,  65, 134, 354, 323,
        167, 166, 390, 151, 190, 182, 382, 367, 128,  18,  10, 408, 321, 119,
        344, 100, 199, 120, 181, 405, 179, 288, 411, 140, 330, 305, 264, 336,
        208, 356, 168,  60, 266, 348, 242,  59, 268, 397, 214, 243, 143, 263,
        270,  87, 388, 125,  29, 204,   5,  16, 191, 282, 118, 322,  81, 104,
        211, 228,  34, 296,  76, 152, 114, 392, 406,  24, 171, 244, 116, 306,
        359, 138, 362, 338, 290, 227,  12, 308, 172, 237, 379, 197, 254, 259,
        146, 176, 252, 366, 332,  22,  43, 216,  99,  79, 275, 196,  67, 258,
        342, 294, 373, 198,  56, 283, 108, 346,  64, 175,  88, 102,  27, 135,
        123, 357, 324,  19,   7,  55, 319, 162,   9, 349, 193,  41, 192, 155,
        412, 352,  72, 186,  69, 160, 386, 267, 150, 312, 205,  20, 309, 364,
        272, 164,  82,  23,  33, 358,  68, 107, 345, 285, 226,  95,  85, 145,
        284,  94,  38, 233, 180, 378,   2,  42, 303, 300, 387, 360, 327,  91,
         32, 109, 240, 260, 287, 115, 184,  86, 249,  21, 203,  75,  78, 341,
        317, 286,   1, 276, 253, 131, 251, 241, 328,  36, 315, 310, 110,  11,
        245,  37, 377, 381,  40, 307, 297,   4, 158, 289,  83, 188, 111, 293,
        337, 396, 361, 280,  50, 380, 368,  84,  51,  54, 340, 212, 370, 169,
        154, 326, 385, 255,  44, 201, 232, 103, 353, 409, 262, 156, 291, 101,
        250, 200, 247,  80, 105, 194, 113, 157, 402, 265, 159, 174,  57, 133,
        141, 185,  58, 238, 106, 334, 129, 136, 313, 127,   3, 365,  61, 277,
         73,  92, 391,  46,  71, 213, 231,  26, 399, 144, 210, 304, 375, 374,
        148, 269, 331,  30,  13, 410, 363, 165, 400, 316, 124, 222,  93, 153,
        117,  39,  70, 170,   6, 132,  77, 224,  66,  63,  48, 239, 413, 302,
        376, 219,  45, 126, 173, 221, 223, 183, 404, 177,  97, 279, 187, 407,
        189,  15, 281, 395, 393, 403, 301, 112,  35,  90, 295, 225, 299,   0,
        163, 261, 220, 122, 202, 161, 335, 347], device='cuda:0')

      180       18.700    1.616e+01    TimeUsed     48409
      184       19.871    1.838e+01    TimeUsed     49428
      188       21.397    1.973e+01    TimeUsed     50447
      192       24.096    1.993e+01    TimeUsed     51460
| buffer.save_or_load_history(): Save ./task_TNCO_04/replay_buffer_states.pth    torch.Size([165376, 414])
| buffer.save_or_load_history(): Save ./task_TNCO_04/replay_buffer_scores.pth    torch.Size([165376, 1])

min_score:    16.449
avg_score:    25.135 ±     5.301
max_score:    49.670
best_result:
tensor([396,  88, 166, 366, 408,  81, 167,  51, 243, 238, 148,  90,   5, 222,
        159, 305, 361, 198,  22, 295, 321, 128, 339, 310, 169, 219, 375, 224,
        409, 372,  38, 241, 247, 146, 338, 200,  36,  52,  54, 178, 226, 234,
        173, 192, 117, 260, 108, 278, 387, 147, 245, 399, 227, 275,   1, 329,
        411, 140, 341, 152,  55, 132,  17, 312, 168, 297,  92, 385, 345, 237,
        119, 120, 102, 101,  44,  75,  94,  89, 332, 307,  74,  85, 212, 181,
        118, 348,  23, 412, 413,  69, 196, 386, 235,  43, 383,  45, 210, 172,
        286, 223, 256, 144, 183, 322, 253,  80, 261, 407, 291, 113, 301, 343,
        353, 216, 115, 378, 134, 158,  86,  73, 404,  35,  66, 106, 251, 136,
        161, 137, 274, 246,   8, 162,  97,  32, 157,  18,  91, 303, 410, 349,
        290, 177,  53, 397, 111, 373, 127, 105,  28, 201,  84, 104, 125, 346,
        323,  49, 347, 271, 304, 355, 208, 309, 124,  37, 344, 306, 360, 389,
         31, 377, 392,  30,  39, 284, 163, 351,  10, 255, 395, 186, 382, 184,
         82, 126, 130, 330, 142, 264, 342, 296, 123, 250,  20, 257, 313,  46,
        268,  34, 289, 170, 308, 380, 150, 265, 371, 213,  93, 154, 333, 262,
         61, 151, 232,  87,  56, 285, 206, 267, 263, 340, 217, 114, 317, 107,
         63, 390, 121, 139,   6, 194, 225, 336, 242, 112, 320, 356, 248, 391,
        283, 379,  29,  83,  64, 281, 292, 135,  42, 276, 324,  33, 402, 103,
        204, 314, 156, 193, 364,  68, 244, 352, 110, 369, 187, 272, 214, 365,
        252, 393, 359, 211, 164, 368, 400, 195,  40, 116, 279, 205, 259, 337,
        319, 199,   7, 240,  77,  72, 370, 209, 145, 122, 207,  60, 405, 327,
        160,  21, 273,  62, 334, 406, 100,  14, 197,  26, 311, 403,  16, 354,
        129, 269,  71, 109, 315, 374, 203, 266, 220, 335, 175, 230, 302, 202,
         19, 376, 153, 174, 328, 388, 188,  96, 138,  98, 287,  25, 326, 190,
        191, 239, 288,  76,  50, 179, 299,  48,   3,  78,  11, 228, 280,  57,
        215, 282,   2, 398, 149,  15,  47, 182, 300,  79, 236,  12, 249, 233,
        131, 218, 362, 363,  58,  67, 357, 155,   0,  41,  24, 270, 293, 325,
        229, 133,   9,  13, 277,   4, 298, 254,  65, 171, 358, 350, 180, 185,
        316, 367, 221, 331, 143,  59, 258, 394, 165, 176, 401, 318, 189,  70,
         27, 381, 231, 294, 141, 384,  95,  99], device='cuda:4')

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions