Skip to content

Scaling Issue in new Pytorch Build method #258

@vishwascm

Description

@vishwascm

Hi, I am reporting my observations on two methods involved. They are with the following two commits 1) ac72dca, which uses Pytorch 2.5.0 and 2) 2dd009f , which uses Pytorch 2.6.0.

Steps followed in first method:

cd Tool-Solutions/docker/pytorch-aarch64
./build.sh --build-type pytorch --onednn acl

The above build will create new image with pytorch installed. I will create a container from it and run detr hugging face model (hug_detr.py script given at end). OMP_NUM_THREADS=64 python hug_detr.py is the command used to run the script, the script is run for 10 times and average time is taken. For 32 threads OMP_NUM_THREADS=32 is used.

Steps followed in second method:

cd Tool-Solutions/docker/pytorch-aarch64
./build.sh
sudo ./dockerize.sh results/torch-2.6.0.dev20241104-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl

The above build will create new image with pytorch installed. I will run detr hugging face model (hug_detr.py script given at end). OMP_NUM_THREADS=64 python hug_detr.py is the command used to run the script, the script is run for 10 times and average time is taken. For 32 threads OMP_NUM_THREADS=32 is used.

Detr Model Script (hug_detr.py):

from transformers import AutoImageProcessor, DetrForObjectDetection
import torch
from time import time
import numpy as np
from PIL import Image
import requests
import os
from torch.profiler import profile, record_function, ProfilerActivity

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
inputs = image_processor(images=image, return_tensors="pt")

with torch.no_grad():
    for i in range(4):
        print(f"Warm up of cycle {i}",end='\r', flush=True)
        outputs=model(**inputs)

times=[]
itr=6
with torch.no_grad():
    for i in range(itr):
        print(f"Actual run of cycle {i}",end='\r', flush=True)
        start_time = time()
        outputs = model(**inputs)
        times.append(time() - start_time)

print("average time (milliseconds) for DETR Inference: %.2f " %(np.average(times[0:itr])*1e3))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions