Skip to content

Commit 2ea9046

Browse files
committed
init
1 parent b8ba7e3 commit 2ea9046

File tree

356 files changed

+151089
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

356 files changed

+151089
-0
lines changed

baselines/README.md

Lines changed: 167 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,167 @@
1+
<!--1. 数据集整体下载,解压到glue文件夹里-->
2+
<!-- ```cd glue ```-->
3+
<!-- ```wget https://storage.googleapis.com/chineseglue/chineseGLUEdatasets.v0.0.1.zip```-->
4+
5+
<!-- 注:lcqmc数据集,请从<a href="http://icrc.hitsz.edu.cn/info/1037/1146.htm">这里</a>申请或搜索网络-->
6+
7+
<!--2. 训练模型-->
8+
<!-- 将预训练模型下载解压到对应的模型中prev_trained_model文件夹里-->
9+
<!-- a. albert_xlarge-->
10+
<!-- https://github.com/brightmart/albert_zh-->
11+
<!-- b. bert-->
12+
<!-- https://github.com/google-research/bert -->
13+
<!-- c. bert-wwm-ext -->
14+
<!-- https://github.com/ymcui/Chinese-BERT-wwm -->
15+
<!-- d. ernie -->
16+
<!-- https://github.com/ArthurRizar/tensorflow_ernie -->
17+
<!-- e. roberta -->
18+
<!-- https://github.com/brightmart/roberta_zh -->
19+
<!-- f. xlnet -->
20+
<!-- https://github.com/ymcui/Chinese-PreTrained-XLNet -->
21+
<!-- 修改run_classifier.sh指定模型路径 -->
22+
<!-- 运行各个模型文件夹下不同任务对应的run_classifier_*.sh即可。如跑xnl运行: -->
23+
<!-- ```sh run_classifier_xnli.sh```-->
24+
25+
1. 一键运行
26+
27+
我们为您提供了可以“一键运行”的脚本来辅助您更快的在指定模型上运行特定任务。
28+
29+
以在 Bert 模型上运行“BQ 智能客服问句匹配”任务为例,您可以直接在 chineseGLUE/baselines/models/**bert**/ 下运行 run_classifier_**bq**.sh 脚本。
30+
31+
```bash
32+
cd chineseGLUE/baselines/models/bert/
33+
sh run_classifier_bq.sh
34+
```
35+
36+
该脚本将会自动下载“BQ 智能客服问句匹配”数据集(保存在chineseGLUE/baselines/glue/chineseGLUEdatasets/**bq**/ 文件夹下)和Bert模型(保存在 chineseGLUE/baselines/models/bert/prev_trained_model/ 下)。
37+
38+
如果您想在其他模型上执行其他的任务,只需要在对应模型的目录下找到对应任务的执行脚本( run_classifier_**??**.sh ),即可直接运行。
39+
40+
2. 测试效果
41+
42+
1. TNEWS 文本分类 (Accuracy)
43+
44+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
45+
| :----:| :----: | :----: | :----: |
46+
| ALBERT-xlarge | 88.30 | 88.30 |batch_size=32, length=128, epoch=3 |
47+
| BERT-base | 89.80 | 89.78 | batch_size=32, length=128, epoch=3 |
48+
| BERT-wwm-ext-base | 89.88 | 89.81 | batch_size=32, length=128, epoch=3 |
49+
| ERNIE-base | 89.77 |89.83 | batch_size=32, length=128, epoch=3 |
50+
| RoBERTa-large |***90.00*** | ***89.91*** | batch_size=16, length=128, epoch=3 |
51+
| XLNet-mid |86.14 | 86.26 | batch_size=32, length=128, epoch=3 |
52+
| RoBERTa-wwm-ext | 89.82 | 89.79 | batch_size=32, length=128, epoch=3 |
53+
| RoBERTa-wwm-large-ext | ***90.05*** | ***90.11*** | batch_size=16, length=128, epoch=3 |
54+
55+
2. XNLI 自然语言推理 (Accuracy)
56+
57+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
58+
| :----:| :----: | :----: | :----: |
59+
| ALBERT-xlarge |74.0? |74.0? |batch_size=64, length=128, epoch=2 |
60+
| ALBERT-base | 77.0 | 77.1 |batch_size=64, length=128, epoch=2 |
61+
| ALBERT-large | 78.0 | 77.5 |batch_size=64, length=128, epoch=2 |
62+
| BERT-base | 77.80 | 77.8 | batch_size=64, length=128, epoch=2 |
63+
| BERT-wwm-ext-base | 79.4 | 78.7 | batch_size=64, length=128, epoch=2 |
64+
| ERNIE-base | 79.7 |78.6 | batch_size=64, length=128, epoch=2 |
65+
| RoBERTa-large |***80.2*** |***79.9*** | batch_size=64, length=128, epoch=2 |
66+
| XLNet-mid |79.2 | 78.7 | batch_size=64, length=128, epoch=2 |
67+
| RoBERTa-wwm-ext | 79.56 | 79.28 | batch_size=64, length=128, epoch=2 |
68+
| RoBERTa-wwm-large-ext | ***80.20*** | ***80.04*** | batch_size=16, length=128, epoch=2 |
69+
70+
3. LCQMC 语义相似度匹配 (Accuracy)
71+
72+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
73+
| :----:| :----: | :----: | :----: |
74+
| ALBERT-xlarge | 89.00 | 86.76 |batch_size=64, length=128, epoch=3 |
75+
| BERT-base | 89.4 | 86.9 | batch_size=64, length=128, epoch=3 |
76+
| BERT-wwm-ext-base |89.1 | ***87.3*** | batch_size=64, length=128, epoch=3 |
77+
| ERNIE-base | 89.8 | 87.2 | batch_size=64, length=128, epoch=3|
78+
| RoBERTa-large |***89.9*** | 87.2| batch_size=64, length=128, epoch=3 |
79+
| XLNet-mid | 86.14 | 85.98 | batch_size=32, length=128, epoch=3 |
80+
| RoBERTa-wwm-ext | 89.08 | 86.33 | batch_size=64, length=128, epoch=3 |
81+
| RoBERTa-wwm-large-ext | 89.79 | 86.82 | batch_size=16, length=128, epoch=3 |
82+
83+
4. INEWS 互联网情感分析 (Accuracy)
84+
85+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
86+
| :----:| :----: | :----: | :----: |
87+
| ALBERT-xlarge |83.70 | 81.90 |batch_size=32, length=512, epoch=8 |
88+
| BERT-base | 81.29 | 82.70 | batch_size=16, length=512, epoch=3 |
89+
| BERT-wwm-ext-base | 81.93 | 83.46 | batch_size=16, length=512, epoch=3 |
90+
| ERNIE-base | ***84.50*** |***85.14*** | batch_size=16, length=512, epoch=3 |
91+
| RoBERTa-large |81.90 | 84.00 | batch_size=4, length=512, epoch=3 |
92+
| XLNet-mid |82.00 | 84.00 | batch_size=8, length=512, epoch=3 |
93+
| RoBERTa-wwm-ext | 82.98 | 82.28 | batch_size=16, length=512, epoch=3 |
94+
| RoBERTa-wwm-large-ext |83.73 | 82.78 | batch_size=4, length=512, epoch=3 |
95+
96+
5. DRCD 繁体阅读理解 (F1, EM)
97+
98+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
99+
| :----:| :----: | :----: | :----: |
100+
| BERT-base |F1:92.30 EM:86.60 | F1:91.46 EM:85.49 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
101+
| BERT-wwm-ext-base |F1:93.27 EM:88.00 | F1:92.63 EM:87.15 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
102+
| ERNIE-base |F1:92.78 EM:86.85 | F1:92.01 EM:86.03 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
103+
| ALBERT-large |F1:93.90 EM:88.88 | F1:93.06 EM:87.52 | batch=32, length=512, epoch=3 lr=2e-5 warmup=0.05 |
104+
| ALBERT-xlarge |F1:94.63 EM:89.68 | F1:94.70 EM:89.78 | batch_size=32, length=512, epoch=3 lr=2.5e-5 warmup=0.06 |
105+
| ALBERT-tiny |F1:81.51 EM:71.61 | F1:80.67 EM:70.08 | batch=32, length=512, epoch=3 lr=2e-4 warmup=0.1 |
106+
| RoBERTa-large |F1:94.93 EM:90.11 | F1:94.25 EM:89.35 | batch=32, length=256, epoch=2 lr=3e-5 warmup=0.1|
107+
| xlnet-mid |F1:92.08 EM:84.40 | F1:91.44 EM:83.28 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
108+
| RoBERTa-wwm-ext |F1:94.26 EM:89.29 | F1:93.53 EM:88.12 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1|
109+
| RoBERTa-wwm-large-ext |***F1:95.32 EM:90.54*** | ***F1:95.06 EM:90.70*** | batch=32, length=512, epoch=2 lr=2.5e-5 warmup=0.1 |
110+
111+
6. CMRC2018 阅读理解 (F1, EM)
112+
113+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
114+
| :----:| :----: | :----: | :----: |
115+
| BERT-base |F1:85.48 EM:64.77 | F1:87.17 EM:69.72 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
116+
| BERT-wwm-ext-base |F1:86.68 EM:66.96 |F1:88.78 EM:73.23| batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
117+
| ERNIE-base |F1:87.30 EM:66.89 | F1:89.62 EM:73.32 | batch=32, length=512, epoch=2 lr=3e-5 warmup=0.1 |
118+
| ALBERT-large | F1:87.86 EM:67.75 |F1:90.17 EM:73.66| epoch3, batch=32, length=512, lr=2e-5, warmup=0.05 |
119+
| ALBERT-xlarge | F1:88.66 EM:68.90 |F1:90.92 EM:75.22| epoch3, batch=32, length=512, lr=2e-5, warmup=0.1 |
120+
| ALBERT-tiny | F1:73.95 EM:48.31 |F1:75.73 EM:53.68| epoch3, batch=32, length=512, lr=2e-4, warmup=0.1 |
121+
| RoBERTa-large | F1:88.61 EM:69.94 |F1:90.94 EM:76.11| epoch2, batch=32, length=256, lr=3e-5, warmup=0.1 |
122+
| xlnet-mid |F1:85.63 EM:65.31 | F1:86.09 EM:66.51 | epoch2, batch=32, length=512, lr=3e-5, warmup=0.1 |
123+
| RoBERTa-wwm-ext |F1:87.28 EM:67.89 | F1:89.74 EM:73.89 | epoch2, batch=32, length=512, lr=3e-5, warmup=0.1 |
124+
| RoBERTa-wwm-large-ext |***F1:89.42 EM:70.59*** | ***F1:91.56 EM:76.58*** | epoch2, batch=32, length=512, lr=2.5e-5, warmup=0.1 |
125+
126+
7. BQ 智能客服问句匹配 (Accuracy)
127+
128+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
129+
| :----:| :----: | :----: | :----: |
130+
| BERT-base | 85.86 | 85.08 | batch_size=64, length=128, epoch=3 |
131+
| BERT-wwm-ext-base | 86.05 | ***85.21*** |batch_size=64, length=128, epoch=3 |
132+
| ERNIE-base | 85.92 | 84.47 | batch_size=64, length=128, epoch=3 |
133+
| RoBERTa-large | 85.68 | 85.20 | batch_size=8, length=128, epoch=3 |
134+
| XLNet-mid | 79.81 | 77.85 | batch_size=32, length=128, epoch=3 |
135+
| ALBERT-xlarge | 85.21 | 84.21 | batch_size=16, length=128, epoch=3 |
136+
| ALBERT-tiny | 82.04 | 80.76 | batch_size=64, length=128, epoch=5 |
137+
| RoBERTa-wwm-ext | 85.31 | 84.02 | batch_size=64, length=128, epoch=3 |
138+
| RoBERTa-wwm-large-ext | ***86.34*** | 84.90 | batch_size=16, length=128, epoch=3 |
139+
140+
8. MSRANER 命名实体识别 (F1)
141+
142+
| 模型 | 测试集(test) | 训练参数 |
143+
| :----: | :----: | :----: |
144+
| BERT-base | 95.38 | batch_size=16, length=256, epoch=5, lr=2e-5 |
145+
| BERT-wwm-ext-base | 95.26 | batch_size=16, length=256, epoch=5, lr=2e-5 |
146+
| ERNIE-base | 95.17 | batch_size=16, length=256, epoch=5, lr=2e-5 |
147+
| RoBERTa-large | ***96.07*** | batch_size=8, length=256, epoch=5, lr=2e-5 |
148+
| XLNet-mid | - | - |
149+
| ALBERT-xlarge | - | - |
150+
| ALBERT-tiny | - | - |
151+
| RoBERTa-wwm-ext | 95.06 | batch_size=16, length=256, epoch=5, lr=2e-5 |
152+
| RoBERTa-wwm-large-ext | 95.32 | batch_size=8, length=256, epoch=5, lr=2e-5 |
153+
154+
9. THUCNEWS 长文本分类 (Accuracy)
155+
156+
| 模型 | 开发集(dev) | 测试集(test) | 训练参数 |
157+
| :----:| :----: | :----: | :----: |
158+
| ALBERT-xlarge | 95.74 | 95.45 |batch_size=32, length=512, epoch=8 |
159+
| ALBERT-tiny | 92.63 | 93.54 | batch_size=32, length=512, epoch=8 |
160+
| BERT-base | 95.28 | 95.35 | batch_size=8, length=128, epoch=3 |
161+
| BERT-wwm-ext-base | 95.38 | 95.57 | batch_size=8, length=128, epoch=3 |
162+
| ERNIE-base | 94.35 | 94.90 | batch_size=16, length=256, epoch=3 |
163+
| RoBERTa-large | 94.52 | 94.56 | batch_size=2, length=256, epoch=3 |
164+
| XLNet-mid | - | 94.52 | batch_size=16, length=128, epoch=3 |
165+
| RoBERTa-wwm-ext | 95.59 | 95.52 | batch_size=16, length=256, epoch=3 |
166+
| RoBERTa-wwm-large-ext | ***96.10*** | ***95.93*** | batch_size=32, length=512, epoch=8 |
167+
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
{
2+
"attention_probs_dropout_prob": 0.0,
3+
"directionality": "bidi",
4+
"hidden_act": "gelu",
5+
"hidden_dropout_prob": 0.0,
6+
"hidden_size": 768,
7+
"embedding_size": 128,
8+
"initializer_range": 0.02,
9+
"intermediate_size": 3072 ,
10+
"max_position_embeddings": 512,
11+
"num_attention_heads": 12,
12+
"num_hidden_layers": 12,
13+
14+
"pooler_fc_size": 768,
15+
"pooler_num_attention_heads": 12,
16+
"pooler_num_fc_layers": 3,
17+
"pooler_size_per_head": 128,
18+
"pooler_type": "first_token_transform",
19+
"type_vocab_size": 2,
20+
"vocab_size": 21128,
21+
"ln_type":"postln"
22+
23+
}
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
{
2+
"attention_probs_dropout_prob": 0.0,
3+
"directionality": "bidi",
4+
"hidden_act": "gelu",
5+
"hidden_dropout_prob": 0.0,
6+
"hidden_size": 1024,
7+
"embedding_size": 128,
8+
"initializer_range": 0.02,
9+
"intermediate_size": 4096,
10+
"max_position_embeddings": 512,
11+
"num_attention_heads": 16,
12+
"num_hidden_layers": 24,
13+
14+
"pooler_fc_size": 768,
15+
"pooler_num_attention_heads": 12,
16+
"pooler_num_fc_layers": 3,
17+
"pooler_size_per_head": 128,
18+
"pooler_type": "first_token_transform",
19+
"type_vocab_size": 2,
20+
"vocab_size": 21128,
21+
"ln_type":"postln"
22+
23+
}
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
{
2+
"attention_probs_dropout_prob": 0.0,
3+
"directionality": "bidi",
4+
"hidden_act": "gelu",
5+
"hidden_dropout_prob": 0.0,
6+
"hidden_size": 312,
7+
"embedding_size": 128,
8+
"initializer_range": 0.02,
9+
"intermediate_size": 1248 ,
10+
"max_position_embeddings": 512,
11+
"num_attention_heads": 12,
12+
"num_hidden_layers": 4,
13+
14+
"pooler_fc_size": 768,
15+
"pooler_num_attention_heads": 12,
16+
"pooler_num_fc_layers": 3,
17+
"pooler_size_per_head": 128,
18+
"pooler_type": "first_token_transform",
19+
"type_vocab_size": 2,
20+
"vocab_size": 21128,
21+
"ln_type":"postln"
22+
23+
}
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
{
2+
"attention_probs_dropout_prob": 0.0,
3+
"directionality": "bidi",
4+
"hidden_act": "gelu",
5+
"hidden_dropout_prob": 0.0,
6+
"hidden_size": 2048,
7+
"embedding_size": 128,
8+
"initializer_range": 0.02,
9+
"intermediate_size": 8192,
10+
"max_position_embeddings": 512,
11+
"num_attention_heads": 32,
12+
"num_hidden_layers": 24,
13+
14+
"pooler_fc_size": 1024,
15+
"pooler_num_attention_heads": 64,
16+
"pooler_num_fc_layers": 3,
17+
"pooler_size_per_head": 128,
18+
"pooler_type": "first_token_transform",
19+
"type_vocab_size": 2,
20+
"vocab_size": 21128,
21+
"ln_type":"preln"
22+
23+
}
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
{
2+
"attention_probs_dropout_prob": 0.0,
3+
"directionality": "bidi",
4+
"hidden_act": "gelu",
5+
"hidden_dropout_prob": 0.0,
6+
"hidden_size": 4096,
7+
"embedding_size": 128,
8+
"initializer_range": 0.02,
9+
"intermediate_size": 16384,
10+
"max_position_embeddings": 512,
11+
"num_attention_heads": 64,
12+
"num_hidden_layers": 12,
13+
14+
"pooler_fc_size": 1024,
15+
"pooler_num_attention_heads": 64,
16+
"pooler_num_fc_layers": 3,
17+
"pooler_size_per_head": 128,
18+
"pooler_type": "first_token_transform",
19+
"type_vocab_size": 2,
20+
"vocab_size": 21128,
21+
"ln_type":"preln"
22+
23+
}
Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,19 @@
1+
{
2+
"attention_probs_dropout_prob": 0.0,
3+
"directionality": "bidi",
4+
"hidden_act": "gelu",
5+
"hidden_dropout_prob": 0.0,
6+
"hidden_size": 768,
7+
"initializer_range": 0.02,
8+
"intermediate_size": 3072,
9+
"max_position_embeddings": 512,
10+
"num_attention_heads": 12,
11+
"num_hidden_layers": 12,
12+
"pooler_fc_size": 768,
13+
"pooler_num_attention_heads": 12,
14+
"pooler_num_fc_layers": 3,
15+
"pooler_size_per_head": 128,
16+
"pooler_type": "first_token_transform",
17+
"type_vocab_size": 2,
18+
"vocab_size": 21128
19+
}

0 commit comments

Comments
 (0)