Skip to content

grad, div, curl defintions #210

@KnutAM

Description

@KnutAM

In the literature, there are different definitions for divergence and curl for second order and higher tensor fields. With the introduction of 3rd order Tensors, #205, we need to define this clearly. This issue is to get an overview over different sources with the goal to make a decision for which definition should be used.

Let's denote a general second-order tensor as $\boldsymbol{S}$ for the discussion. Note that we always assume an orthonormal, right-handed Cartesian coordinate system.

Just comment below the additional definitions and references, and I'll try to keep the tables updated (ping me on Slack if I forget)

Gradient

AFAIK, this is not problematic (correct me if I'm wrong (see below and [5]). To my knowledge, there are just different notations (which can be confusing in itself), i.e.

$$\begin{align*} \mathrm{grad}(\boldsymbol{v}) &= \nabla \boldsymbol{v} = \boldsymbol{v} \otimes \nabla = \frac{\partial v_i}{x_j} \boldsymbol{e}_i\otimes\boldsymbol{e}_j \\\ \mathrm{grad}(\boldsymbol{S}) &= \nabla \boldsymbol{S} = \boldsymbol{S} \otimes \nabla = \frac{\partial S_{ij}}{x_k} \boldsymbol{e}_i\otimes\boldsymbol{e}_j\otimes\boldsymbol{e}_k \end{align*}$$

Reddy [5] does actually define the gradient as $\nabla \boldsymbol{v} = \nabla\otimes \boldsymbol{v} = \frac{\partial v_j}{x_i} \boldsymbol{e}_i\otimes\boldsymbol{e}_j$, which is the transpose. And even more, the derivative $\frac{\partial \boldsymbol{v}}{\boldsymbol{x}} = \frac{\partial v_j}{x_i} \boldsymbol{e}_i\otimes\boldsymbol{e}_j$ follows this 👀

Divergence

Tensor form Index form Sources Comment
$\nabla \cdot \boldsymbol{S} $ $d_i = \frac{\partial S_{ji}}{x_j}$ [1], [5] (2.5.21)
$\boldsymbol{S} \cdot \nabla $ $d_i = \frac{\partial S_{ij}}{x_j}$ [2] (2.134), [3] (2.3.11), [4] (2.112) Common in mechanics?

Curl

Here it is important that our definition fulfills $\mathrm{grad}(\mathrm{curl}(\boldsymbol{S}))=\boldsymbol{0}$. There exist definitions in the literature that don't. As a precursor, we haven't defined the cross-product for 2nd-order tensors, so for the discussion, let's define the cross product with a vector $\boldsymbol{v}$ as

$$\begin{align*} \boldsymbol{S}\times\boldsymbol{v} &= S_{ij} v_k \boldsymbol{e}_i \otimes \boldsymbol{e}_j \times \boldsymbol{e}_k = S_{ij} v_k \boldsymbol{e}_i \otimes [\varepsilon_{jkm} \boldsymbol{e}_m] = S_{ij} v_k \varepsilon_{jkm} \boldsymbol{e}_i \otimes \boldsymbol{e}_m \\\ \boldsymbol{v}\times \boldsymbol{S} &= v_i S_{jk} \boldsymbol{e}_i \times \boldsymbol{e}_j \otimes \boldsymbol{e}_k = v_i S_{jk} [\varepsilon_{ijm} \boldsymbol{e}_m] \otimes \boldsymbol{e}_k = v_i S_{jk} \varepsilon_{ijm} \boldsymbol{e}_m \otimes \boldsymbol{e}_k \end{align*}$$
Tensor form Index form Sources Comment
$- \boldsymbol{S} \times \nabla $ $d_{ij} = \varepsilon_{opj}\frac{\partial S_{ip}}{x_o}$ [3] (2.3.18)
$\nabla \times \boldsymbol{S}$ $d_{ij} = \varepsilon_{opi}\frac{\partial S_{jp}}{x_o}$ [1] From the definition of the cross-product, this should be $\nabla \times \boldsymbol{S}^\mathrm{T}$

where $\varepsilon_{ijk}$ is the Levi-Civita symbol.

Sources

[1] https://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics)
[2] Bonet and Wood (2008)
[3] Rubin (2000)
[4] Itskov (2015)
[5] Reddy (2008) (Reddy, J. N. (2008). An introduction to continuum mechanics: with applications. Cambridge University Press.)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions