Releases: JuDFTteam/best-of-atomistic-machine-learning
Releases · JuDFTteam/best-of-atomistic-machine-learning
Update: 2024.03.17
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- cdk (🥇24 · ⭐ 460 · 📈) - The Chemistry Development Kit.
LGPL-2.1cheminformaticsJava - AI for Science Resources (🥈14 · ⭐ 360 · 📈) - List of resources for AI4Science research, including learning resources.
GPL-3.0 license - QH9: A Quantum Hamiltonian Prediction Benchmark (🥈14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
CC-BY-NC-SA 4.0ML-DFT - Artificial Intelligence for Science (AIRS) (🥉14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
GPL-3.0 licenserep-learngenerativeML-IAPMDML-DFTML-WFTbiomolecules - QHNet (🥈14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
GPL-3.0rep-learn
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- TorchMD-NET (🥇22 · ⭐ 270 · 📉) - Neural network potentials.
MITMDrep-learntransformerpre-trained - DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · 📉) - A library for graph deep learning research.
GPL-3.0 - mlcolvar (🥈16 · ⭐ 74 · 📉) - A unified framework for machine learning collective variables for enhanced sampling simulations.
MITenhanced-sampling
➕ Added Projects
Projects that were recently added to this best-of list.
- pymatviz (🥉17 · ⭐ 78 · ➕) - A toolkit for visualizations in materials informatics.
MITgeneral-toolprobabilistic - FAENet (🥈11 · ⭐ 21 · ➕) -
MIT - GNoME Explorer (🥉7 · ⭐ 500 · 🐣) - Graph Networks for Materials Exploration Database.
Apache-2datasetsmaterials-discovery - Materials Discovery: GNoME (🥈6 · ⭐ 500 · 🐣) -
Apache-2rep-learn,datasets - halex (🥉2 · ⭐ 1 · 🐣) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844.
UnlicensedML-WFTexcited-states - TorchMD-NET (🥈20 · ⭐ 220 · ➕) - Neural network potentials based on graph neural networks and equivariant transformers.
MITML-IAPrep-learntranformerpre-trained - LLM-Prop (🥉8 · ⭐ 4 · ➕) - A repository for the LLM-Prop implementation.
None found - MLXDM (🥉7 · ⭐ 4 · 💤) - A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K.
MITlong-range - paper-data-redundancy (🥉7 · ⭐ 3 · 🐣) - Codes and data for the paper On the redundancy in large material datasets: efficient and robust learning with less data.
BSD-3small-datasingle-paper - paper-ml-robustness-material-property (🥉4 · ⭐ 3 · 💤) -
BSD-3datasets,single-paper - Materials Data Facility (MDF) (🥈9 · ⭐ 10 · 💤) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,..
Apache-2 - OPTIMADE Python tools (🥇25 · ⭐ 54 · ➕) - Tools for implementing and consuming OPTIMADE APIs in Python.
MIT - OPTIMADE Tutorial Exercises (🥈8 · ⭐ 11 · ➕) - Tutorial exercises for the OPTIMADE API.
MITdatasets - optimade.science (🥉8 · ⭐ 8 · ➕) - A sky-scanner Optimade browser-only GUI.
MITdatasets - Does this material exist? (🥉4 · ⭐ 2 · ➕) - Vote on whether you think predicted crystal structures could be synthesised.
MITfor-funmaterials-discovery - OPTIMADE providers dashboard (🥉4 · ⭐ 1 · ➕) - A dashboard of known providers.
Unlicensed - GPUMD (🥇20 · ⭐ 300 · ➕) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials..
GPL-3.0MDC++electrostatics - nep-data (🥉1 · ⭐ 9 · 💀) - Data related to the NEP machine-learned potential of GPUMD.
UnlicensedML-IAPMDtransport-phenomena
v2023.12.25
Test whether Zenodo latest release DOI 10.5281/zenodo.10430261 is working. That DOI is used in the README DOI badge.
v2023.12.21
Release for Zenodo DOI.
Update: 2023.12.03-21.16
➕ Added Projects
Projects that were recently added to this best-of list.
- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 59 · ➕) - Specification of a common REST API for access to materials databases.
CC-BY-4.0 - MODNet (🥇17 · ⭐ 53 · ➕) - MODNet: a framework for machine learning materials properties.
MITpre-trainedsmall-datatransfer-learning - Metatensor (🥉15 · ⭐ 25 · ➕) - Storage format for equivariant atomistic machine learning.
BSD-3 - mlcolvar (🥈16 · ⭐ 59 · ➕) - A unified framework for machine learning collective variables for enhanced sampling simulations.
MITenhanced-sampling - JAX-DFT (🥇25 · ⭐ 32K · ➕) - Google Research.
Apache-2 - DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · ➕) - A library for graph deep learning research.
GPL-3.0 - ATOM3D (🥇18 · ⭐ 280 · 💤) - ATOM3D: tasks on molecules in three dimensions.
MITbiomoleculesbenchmarking - ChemCrow (🥇17 · ⭐ 320 · 🐣) - Chemcrow.
MIT - ChemDataExtractor (🥈16 · ⭐ 270 · 💀) - Automatically extract chemical information from scientific documents.
MITliterature-data - ChemNLP project (🥈16 · ⭐ 110 · ➕) - ChemNLP project.
MITdatasets - GT4SD - Generative Toolkit for Scientific Discovery (🥈15 · ⭐ 280 · ➕) - Gradio apps of generative models in GT4SD.
MITgenerativepre-traineddrug-discovery - dlpack (🥉14 · ⭐ 800 · 💤) - common in-memory tensor structure.
Apache-2C++ - Geometric GNN Dojo (🥇12 · ⭐ 350 · ➕) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge.
MITrep-learn - QH9: A Quantum Hamiltonian Prediction Benchmark (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS).
CC-BY-NC-SA 4.0ML-DFT - QHNet (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS).
GPL-3.0rep-learn - Grad DFT (🥈12 · ⭐ 43 · ➕) - Grad-DFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation..
Apache-2 - pretrained-gnns (🥇10 · ⭐ 870 · ➕) - Strategies for Pre-training Graph Neural Networks.
MITpre-trained - DSECOP (🥈10 · ⭐ 31 · ➕) - This repository contains data science educational materials developed by DSECOP Fellows.
CCO-1.0 - pair_nequip (🥉10 · ⭐ 29 · 💀) - LAMMPS pair style for NequIP.
MITML-IAPrep-learn - tinker-hp (🥉9 · ⭐ 69 · ➕) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs.
Custom - lie-nn (🥈9 · ⭐ 22 · ➕) - Tools for building equivariant polynomials on reductive Lie groups.
MITrep-learn - TurboGAP (🥉9 · ⭐ 14 · ➕) - The TurboGAP code.
CustomFortran - MoLFormers UI (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer.
Apache-2transformerLanguage modelspre-traineddrug-discovery - MoLFormer (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer.
Apache-2transformerpre-traineddrug-discovery - pair_allegro (🥉8 · ⭐ 26 · ➕) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support.
MITML-IAPrep-learn - chemlift (🥉8 · ⭐ 10 · 🐣) - Language-interfaced fine-tuning for chemistry.
MIT - T-e3nn (🥉8 · ⭐ 6 · 💤) - Time-reversal Euclidean neural networks based on e3nn.
MITmagnetism - Awesome Neural Geometry (🥉7 · ⭐ 780 · ➕) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,..
Unlicensededucationalrep-learn - COATI (🥉6 · ⭐ 59 · 🐣) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space.
Apache-2drug-discoverypre-trainedrep-learn - Mat2Spec (🥉6 · ⭐ 24 · 💀) -
MITspectroscopy - NequIP-JAX (🥉5 · ⭐ 10 · ➕) - JAX implementation of the NequIP interatomic potential.
Unlicensed - MAPI_LLM (🥉5 · ⭐ 4 · ➕) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J.
MITdataset - soap_turbo (🥉5 · ⭐ 4 · 💤) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP.
CustomFortran - MACE-tutorials (🥉5 · ⭐ 3 · 🐣) - Another set of tutorials for the MACE interatomic potential by one of the authors.
MITML-IAPrep-learnMD - Point Edge Transformer (PET) (🥉5 · ➕) -...
Update: 2023.08.25-14.45
➕ Added Projects
Projects that were recently added to this best-of list.
- MLDensity_tutorial (🥉1 · ⭐ 3 · 🐣) - Tutorial files to work with ML for the charge density in molecules and solids.
❗Unlicensed - KFAC-JAX (🥇26 · ⭐ 10K · ➕) - Open source code for AlphaFold.
Apache-2 - AlphaFold (🥇24 · ⭐ 10K · ➕) - Open source code for AlphaFold.
Apache-2 - DM21 (🥇21 · ⭐ 12K · ➕) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described..
Apache-2 - DeepQMC (🥇20 · ⭐ 280 · ➕) - Deep learning quantum Monte Carlo for electrons in real space.
MIT - FermiNet (🥈15 · ⭐ 550 · ➕) - An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations.
Apache-2 - GElib (🥉9 · ⭐ 15 · ➕) - C++/CUDA library for SO(3) equivariant operations.
MPL-2.0 - Cormorant (🥉6 · ⭐ 51 · 💀) - Codebase for Cormorant Neural Networks.
Unlicensed - Autobahn (🥉5 · ⭐ 26 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks.
MIT - SphericalNet ( ⭐ 2 · 💤) - Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..
Unlicensed - cnine (➕) -
Unlicensed - chemrev-gpr (🥉4 · ⭐ 5 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.
Unlicensed - paper-qa (🥇23 · ⭐ 2.6K · 🐣) - LLM Chain for answering questions from documents with citations.
Apache-2 - Best-of Machine Learning with Python (🥇22 · ⭐ 14K · ➕) - A ranked list of awesome machine learning Python libraries. Updated weekly.
CC-BY-4.0general-mlPython - Graph-based Deep Learning Literature (🥈18 · ⭐ 4.3K · ➕) - links to conference publications in graph-based deep learning.
MITgeneral-mlrep-learn - Awesome Materials Informatics (🥉11 · ⭐ 290 · ➕) - Curated list of known efforts in materials informatics = modern materials science.
Customtopics/materials-informatics - The Collection of Database and Dataset Resources in Materials Science (🥉8 · ⭐ 160 · ➕) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning..
Unlicenseddatasets - A Highly Opinionated List of Open-Source Materials Informatics Resources (🥉7 · ⭐ 93 · 💀) - A Highly Opinionated List of Open Source Materials Informatics Resources.
MIT - GitHub topic materials-informatics (➕) -
Unlicensed - cdk (🥇25 · ⭐ 430 · ➕) - The Chemistry Development Kit.
LGPL-2.1cheminformaticsJava - MPContribs (🥇23 · ⭐ 32 · ➕) - Platform for materials scientists to contribute and disseminate their materials data through Materials Project.
MIT - Open Catalyst datasets (🥇18 · ⭐ 450 · ➕) - The datasets of the Open Catalyst project, OC20, OC22.
CC-BY-4.0 - GT4SD (🥇18 · ⭐ 230 · ➕) - GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.
MITpre-traineddrug-discoveryrep-learn - CHGNet (🥈18 · ⭐ 79 · 🐣) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov.
CustomMDpre-trainedelectrostaticsmagnetismstructure-relaxation - escnn (🥈17 · ⭐ 200 · ➕) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.
Custom - MatBench (🥈16 · ⭐ 77 · ➕) - Matbench: Benchmarks for materials science property prediction.
MITdatasetsbenchmarking - NNPOps (🥈15 · ⭐ 61 · ➕) - High-performance operations for neural network potentials.
MITMDC++ - AI for Science Resources (🥉14 · ⭐ 220 · 🐣) - List of resources for AI4Science research, including learning resources.
GPL-3.0 license - Artificial Intelligence for Science (AIRS) (🥉14 · ⭐ 220 · 🐣) - Artificial Intelligence for Science (AIRS).
GPL-3.0 licenserep-learngenerativeMLIAPMDML-DFTML-WFTbiomolecules - openmm-torch (🥈14 · ⭐ 130 · ➕) - OpenMM plugin to define forces with neural networks.
CustomMLIAPC++ - SPICE (🥈14 · ⭐ 89 · ➕) - A collection of QM data for training potential functions.
MITMLIAPMD - mp-pyrho (🥉14 · ⭐ 27 · ➕) -
CustomML-DFT - GlassPy (🥈13 · ⭐ 14 · ➕) - Python module for scientists working with glass materials.
GPL-3.0 - mat2vec (🥈12 · ⭐ 590 · ➕) - Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from ...
Update: 2023.06.12-20.27
➕ Added Projects
Projects that were recently added to this best-of list.
- Deep Graph Library (DGL) (🥇37 · ⭐ 12K · ➕) - Python package built to ease deep learning on graph,..
Apache-2 - DeepChem (🥇36 · ⭐ 4.4K · ➕) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry,..
MIT - RDKit (🥇30 · ⭐ 2.1K · ➕) -
BSD-3 - DeePMD-kit (🥇28 · ⭐ 1.1K · ➕) - A deep learning package for many-body potential..
❗️LGPL-3.0 - Matminer (🥇27 · ⭐ 390 · ➕) - Data mining for materials science.
❗Unlicensed - SchNetPack (🥇25 · ⭐ 600 · ➕) - SchNetPack - Deep Neural Networks for Atomistic Systems.
❗Unlicensed - DScribe (🥇25 · ⭐ 320 · ➕) - DScribe is a python package for creating machine learning..
Apache-2 - QUIP (🥈25 · ⭐ 290 · ➕) - libAtoms/QUIP molecular dynamics framework:..
❗Unlicensed - paper-qa (🥇24 · ⭐ 2.6K · 🐣) - LLM Chain for answering questions from documents with citations.
Apache-2 - e3nn (🥇23 · ⭐ 680 · ➕) - A modular framework for neural networks with Euclidean symmetry.
❗Unlicensed - dgl-lifesci (🥇23 · ⭐ 580 · ➕) - Python package for graph neural networks in chemistry and..
Apache-2 - MEGNet (🥇22 · ⭐ 450 · ➕) - Graph Networks as a Universal Machine Learning Framework for..
BSD-3 - DP-GEN (🥇22 · ⭐ 220 · ➕) - The deep potential generator to generate a deep-learning..
❗️LGPL-3.0 - dpdata (🥇22 · ⭐ 130 · ➕) - Manipulating multiple atomic simulation data formats, including..
❗️LGPL-3.0 - kgcnn (🥈22 · ⭐ 75 · ➕) - Graph convolution with tf.keras.
MIT - NVIDIA Deep Learning Examples for Tensor Cores (🥇21 · ⭐ 11K · ➕) - State-of-the-Art Deep Learning scripts organized by..
❗Unlicensed - TorchANI (🥇21 · ⭐ 390 · ➕) - Accurate Neural Network Potential on PyTorch.
MIT - MAML (🥈21 · ⭐ 240 · ➕) - Python for Materials Machine Learning, Materials Descriptors, Machine..
BSD-3 - NequIP (🥇20 · ⭐ 390 · ➕) - NequIP is a code for building E(3)-equivariant interatomic potentials.
MIT - JARVIS-Tools (🥈20 · ⭐ 220 · ➕) - JARVIS-Tools: an open-source software package for..
❗Unlicensed - ocp (🥈19 · ⭐ 410 · ➕) - ocp is the Open Catalyst Projects library of state-of-the-art machine..
MIT - exmol (🥇19 · ⭐ 240 · ➕) - Explainer for black box models that predict molecule properties.
MIT - FitSNAP (🥈19 · ⭐ 100 · ➕) - Software for generating SNAP machine-learning interatomic..
❗️GPL-2.0 - FLARE (🥈18 · ⭐ 220 · ➕) - An open-source Python package for creating fast and accurate interatomic..
MIT - e3nn-jax (🥈18 · ⭐ 110 · ➕) - jax library for E3 Equivariant Neural Networks.
Apache-2 - MatGL (Materials Graph Library) (🥈18 · ⭐ 70 · ➕) - Graph deep learning library for materials.
BSD-3 - Scikit-Matter (🥈18 · ⭐ 58 · ➕) -
BSD-3scikit-learn - MALA (🥇18 · ⭐ 33 · ➕) - Materials Learning Algorithms. A framework for machine learning materials..
BSD-3 - M3GNet (🥈17 · ⭐ 160 · ➕) - Materials graph network with 3-body interactions featuring a DFT..
BSD-3 - XenonPy (🥈17 · ⭐ 110 · ➕) - XenonPy is a Python Software for Materials Informatics.
BSD-3 - Chemiscope (🥇17 · ⭐ 86 · ➕) -
BSD-3 - MAST-ML (🥈17 · ⭐ 82 · ➕) - MAterials Simulation Toolkit for Machine Learning (MAST-ML).
MIT - DADApy (🥇17 · ⭐ 63 · ➕) - Distance-based Analysis of DAta-manifolds in python.
Apache-2 - Uni-Fold (🥇16 · ⭐ 260 · ➕) - An open-source platform for developing protein models beyond..
Apache-2 - QML (🥉16 · ⭐ 180 · 💀) - QML: Quantum Machine Learning.
MIT - ALIGNN (🥈16 · ⭐ 130 · ➕) - Atomistic Line Graph Neural Network.
❗Unlicensed - sGDML (🥈16 · ⭐ 110 · ➕) - sGDML - Reference implementation of the Symmetric Gradient Domain..
MIT - CatLearn (🥇16 · ⭐ 86 · ➕) -
❗️GPL-3.0 - benchmarking-gnns (🥈15 · ⭐ 2.2K · 💀) - Repository for benchmarking graph neural networks.
MIT - Uni-Mol (🥈15 · ⭐ 340 · ➕) - Official Repository for the Uni-Mol Series Methods.
MIT - MoLeR (🥇15 · ⭐ 180 · ➕) - Implementation of MoLeR: a generative model of molecular graphs which..
MIT - Librascal (🥇15 · ⭐ 68 · ➕) - A scalable and versatile library to generate representations..
❗️LGPL-2.1 - SpheriCart (🥇15 · ⭐ 34 · 🐣) - Multi-language library for the calculation of spherical..
Apache-2 - KLIFF (🥈15 · ⭐ 26 · ➕) - KIM-based Learning-Integrated Fitting Framework (KLIFF).
❗️LGPL-2.1 - CCS_fit (🥈15 · ⭐ 5 · ➕) - Curvature Constrained Splines.
❗️GPL-3.0 - n2p2 (🥈14 · ⭐ 180 · 💤) - n2p2 - A Neural Network Potential Package.
❗️GPL-3.0 - <a href="https://github.c...