@@ -1548,9 +1548,11 @@ end
1548
1548
compact=false,
1549
1549
)
1550
1550
1551
+ *Private method.* Use at own risk.
1552
+
1551
1553
Resampling model wrapper, used internally by the `fit` method of `TunedModel` instances
1552
- and `IteratedModel` instances. See [`evaluate!](@ref) for options. Not intended for use by
1553
- general user, who will ordinarily use [`evaluate!`](@ref) directly.
1554
+ and `IteratedModel` instances. See [`evaluate!` ](@ref) for meaning of the options. Not
1555
+ intended for use by general user, who will ordinarily use [`evaluate!`](@ref) directly.
1554
1556
1555
1557
Given a machine `mach = machine(resampler, args...)` one obtains a performance evaluation
1556
1558
of the specified `model`, performed according to the prescribed `resampling` strategy and
@@ -1592,16 +1594,6 @@ mutable struct Resampler{S, L} <: Model
1592
1594
compact:: Bool
1593
1595
end
1594
1596
1595
- # Some traits are markded as `missing` because we cannot determine
1596
- # them from from the type because we have removed `M` (for "model"} as
1597
- # a `Resampler` type parameter. See
1598
- # https://github.com/JuliaAI/MLJTuning.jl/issues/141#issue-951221466
1599
-
1600
- StatisticalTraits. is_wrapper (:: Type{<:Resampler} ) = true
1601
- StatisticalTraits. supports_weights (:: Type{<:Resampler} ) = missing
1602
- StatisticalTraits. supports_class_weights (:: Type{<:Resampler} ) = missing
1603
- StatisticalTraits. is_pure_julia (:: Type{<:Resampler} ) = true
1604
-
1605
1597
function MLJModelInterface. clean! (resampler:: Resampler )
1606
1598
warning = " "
1607
1599
if resampler. measure === nothing && resampler. model != = nothing
@@ -1787,11 +1779,16 @@ function MLJModelInterface.update(
1787
1779
1788
1780
end
1789
1781
1790
- # The input and target scitypes cannot be determined from the type
1791
- # because we have removed `M` (for "model") as a `Resampler` type
1792
- # parameter. See
1782
+ # Some traits are marked as `missing` because we cannot determine
1783
+ # them from from the type because we have removed `M` (for "model"} as
1784
+ # a `Resampler` type parameter. See
1793
1785
# https://github.com/JuliaAI/MLJTuning.jl/issues/141#issue-951221466
1794
1786
1787
+ StatisticalTraits. is_wrapper (:: Type{<:Resampler} ) = true
1788
+ StatisticalTraits. supports_weights (:: Type{<:Resampler} ) = missing
1789
+ StatisticalTraits. supports_class_weights (:: Type{<:Resampler} ) = missing
1790
+ StatisticalTraits. is_pure_julia (:: Type{<:Resampler} ) = true
1791
+ StatisticalTraits. constructor (:: Type{<:Resampler} ) = Resampler
1795
1792
StatisticalTraits. input_scitype (:: Type{<:Resampler} ) = Unknown
1796
1793
StatisticalTraits. target_scitype (:: Type{<:Resampler} ) = Unknown
1797
1794
StatisticalTraits. package_name (:: Type{<:Resampler} ) = " MLJBase"
0 commit comments