|
1 | 1 | using ImageFiltering, ImageCore, OffsetArrays, Colors, FixedPointNumbers |
2 | 2 | using Statistics, Test |
| 3 | +using ImageFiltering: IdentityUnitRange |
3 | 4 |
|
4 | 5 | @testset "specialty" begin |
5 | 6 | @testset "Laplacian" begin |
@@ -164,17 +165,17 @@ using Statistics, Test |
164 | 165 | for kern in (Kernel.gaussian((1.3,)), Kernel.gaussian((1.3,),(7,))) |
165 | 166 | @test kern ≈ gaussiancmp(1.3, axes(kern,1)) |
166 | 167 | end |
167 | | - @test KernelFactors.gaussian(2, 9) ≈ gaussiancmp(2, Base.Slice(-4:4)) |
| 168 | + @test KernelFactors.gaussian(2, 9) ≈ gaussiancmp(2, IdentityUnitRange(-4:4)) |
168 | 169 | k = KernelFactors.gaussian((2,3), (9,7)) |
169 | | - @test vec(k[1]) ≈ gaussiancmp(2, Base.Slice(-4:4)) |
170 | | - @test vec(k[2]) ≈ gaussiancmp(3, Base.Slice(-3:3)) |
| 170 | + @test vec(k[1]) ≈ gaussiancmp(2, IdentityUnitRange(-4:4)) |
| 171 | + @test vec(k[2]) ≈ gaussiancmp(3, IdentityUnitRange(-3:3)) |
171 | 172 | @test sum(KernelFactors.gaussian(5)) ≈ 1 |
172 | 173 | for k = (KernelFactors.gaussian((2,3)), KernelFactors.gaussian([2,3]), KernelFactors.gaussian([2,3], [9,7])) |
173 | 174 | @test sum(k[1]) ≈ 1 |
174 | 175 | @test sum(k[2]) ≈ 1 |
175 | 176 | end |
176 | | - @test Kernel.gaussian((2,), (9,)) ≈ gaussiancmp(2, Base.Slice(-4:4)) |
177 | | - @test Kernel.gaussian((2,3), (9,7)) ≈ gaussiancmp(2, Base.Slice(-4:4)).*gaussiancmp(3, Base.Slice(-3:3))' |
| 177 | + @test Kernel.gaussian((2,), (9,)) ≈ gaussiancmp(2, IdentityUnitRange(-4:4)) |
| 178 | + @test Kernel.gaussian((2,3), (9,7)) ≈ gaussiancmp(2, IdentityUnitRange(-4:4)).*gaussiancmp(3, IdentityUnitRange(-3:3))' |
178 | 179 | @test sum(Kernel.gaussian(5)) ≈ 1 |
179 | 180 | for k = (Kernel.gaussian((2,3)), Kernel.gaussian([2,3]), Kernel.gaussian([2,3], [9,7])) |
180 | 181 | @test sum(k) ≈ 1 |
|
0 commit comments