@@ -76,12 +76,12 @@ function jgemm!(𝐂, 𝐀ᵀ::Adjoint, 𝐁ᵀ::Adjoint)
7676 end
7777end
7878gemmavx! (𝐂, 𝐀, 𝐁) = @turbo for m ∈ indices ((𝐀, 𝐂), 1 ), n ∈ indices ((𝐁, 𝐂), 2 )
79- 𝐂ₘₙ = zero (eltype (𝐂))
80- for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
81- 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
82- end
83- 𝐂[m, n] = 𝐂ₘₙ
79+ 𝐂ₘₙ = zero (eltype (𝐂))
80+ for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
81+ 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
8482 end
83+ 𝐂[m, n] = 𝐂ₘₙ
84+ end
8585function gemmavx! (
8686 Cc:: AbstractMatrix{Complex{T}} ,
8787 Ac:: AbstractMatrix{Complex{T}} ,
@@ -102,12 +102,12 @@ function gemmavx!(
102102 end
103103end
104104gemmavxt! (𝐂, 𝐀, 𝐁) = @tturbo for m ∈ indices ((𝐀, 𝐂), 1 ), n ∈ indices ((𝐁, 𝐂), 2 )
105- 𝐂ₘₙ = zero (eltype (𝐂))
106- for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
107- 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
108- end
109- 𝐂[m, n] = 𝐂ₘₙ
105+ 𝐂ₘₙ = zero (eltype (𝐂))
106+ for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
107+ 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
110108 end
109+ 𝐂[m, n] = 𝐂ₘₙ
110+ end
111111function gemmavxt! (
112112 Cc:: AbstractMatrix{Complex{T}} ,
113113 Ac:: AbstractMatrix{Complex{T}} ,
@@ -204,11 +204,11 @@ function jdot3avx(x, A, y)
204204 s
205205end
206206jvexp! (b, a) = @inbounds for i ∈ eachindex (a)
207- b[i] = exp (a[i])
208- end
207+ b[i] = exp (a[i])
208+ end
209209jvexpavx! (b, a) = @turbo for i ∈ eachindex (a)
210- b[i] = exp (a[i])
211- end
210+ b[i] = exp (a[i])
211+ end
212212function jsvexp (a)
213213 s = zero (eltype (a))
214214 @inbounds for i ∈ eachindex (a)
@@ -242,12 +242,12 @@ function jgemv!(𝐲, 𝐀ᵀ::Adjoint, 𝐱)
242242 end
243243end
244244jgemvavx! (𝐲, 𝐀, 𝐱) = @turbo for i ∈ eachindex (𝐲)
245- 𝐲ᵢ = zero (eltype (𝐲))
246- for j ∈ eachindex (𝐱)
247- 𝐲ᵢ += 𝐀[i, j] * 𝐱[j]
248- end
249- 𝐲[i] = 𝐲ᵢ
245+ 𝐲ᵢ = zero (eltype (𝐲))
246+ for j ∈ eachindex (𝐱)
247+ 𝐲ᵢ += 𝐀[i, j] * 𝐱[j]
250248 end
249+ 𝐲[i] = 𝐲ᵢ
250+ end
251251function jvar! (𝐬², 𝐀, x̄)
252252 @. s² = zero (eltype (𝐬²))
253253 @inbounds @fastmath for i ∈ 1 : size (𝐀, 2 )
@@ -258,14 +258,14 @@ function jvar!(𝐬², 𝐀, x̄)
258258 end
259259end
260260jvaravx! (𝐬², 𝐀, x̄) = @turbo for j ∈ eachindex (𝐬²)
261- 𝐬²ⱼ = zero (eltype (𝐬²))
262- x̄ⱼ = x̄[j]
263- for i ∈ 1 : size (𝐀, 2 )
264- δ = 𝐀[j, i] - x̄ⱼ
265- 𝐬²ⱼ += δ * δ
266- end
267- 𝐬²[j] = 𝐬²ⱼ
261+ 𝐬²ⱼ = zero (eltype (𝐬²))
262+ x̄ⱼ = x̄[j]
263+ for i ∈ 1 : size (𝐀, 2 )
264+ δ = 𝐀[j, i] - x̄ⱼ
265+ 𝐬²ⱼ += δ * δ
268266 end
267+ 𝐬²[j] = 𝐬²ⱼ
268+ end
269269japlucBc! (D, a, B, c) = @. D = a + B * c' ;
270270japlucBcavx! (D, a, B, c) = @turbo @. D = a + B * c' ;
271271
0 commit comments