-
Notifications
You must be signed in to change notification settings - Fork 49
Open
Description
Hi,
thanks for putting this out!
my model is
frm = @formula(counts ~ 1 +C1 + C2 + ... + C37 + (1 | genotype_id))
modelp = fit(MixedModel,frm, df, Poisson(), fast = true)
in lme4 I can get the random mode and conditional variance like:
lme4::ranef(model, condVar = TRUE)
In MixedModels I can get the means with only(raneftables(model))
For a LMM is it correct to extract the variance as below?
ranefs = DataFrame(only(raneftables(model)))
rename!(ranefs, Dict("(Intercept)" => "mean"))
ranefs.var = vec(condVar(model)[1][1, 1, :])
For a Poisson GLMM, I get the following error:
MethodError: no method matching condVar(::GeneralizedLinearMixedModel{Float64, Poisson{Float64}})
Closest candidates are:
condVar(::LinearMixedModel{T}, ::Any) where T
@ MixedModels ~/.julia/packages/MixedModels/L0NHA/src/linearmixedmodel.jl:324
condVar(::LinearMixedModel{T}) where T
@ MixedModels ~/.julia/packages/MixedModels/L0NHA/src/linearmixedmodel.jl:320
Stacktrace:
[1] top-level scope
@ In[74]:1
What would be the right way to calculate the posterior variance of the random intercept per group?
Thanks a lot for your help!
Metadata
Metadata
Assignees
Labels
No labels