|
98 | 98 | <div class="demo-card-copy">Analyze a tabular data model with LIT, including exploring partial dependence plots and automatically finding counterfactuals.</div>
|
99 | 99 | <div class="demo-card-cta-button"><a href="/lit/demos/penguins.html"></a></div>
|
100 | 100 | </div>
|
101 |
| -<div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone"> |
102 |
| - <div class="demo-card-title"><a href="/lit/demos/images.html" target="_blank">Image classification</a></div> |
103 |
| - <div class="demo-card-tags"> <span class="demo-tag"> images </span> <span class="demo-tag"> multiclass classification </span> |
104 |
| - </div> |
105 |
| - <div class="demo-card-data-source-title">DATA SOURCES</div> |
106 |
| - <div class="demo-card-data-source"> |
107 |
| - Imagenette |
108 |
| - </div> |
109 |
| - <div class="demo-card-copy">Analyze an image classification model with LIT, including multiple image salience techniques.</div> |
110 |
| - <div class="demo-card-cta-button"><a href="/lit/demos/images.html"></a></div> |
111 |
| -</div> |
112 | 101 | <div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone">
|
113 | 102 | <div class="demo-card-title"><a href="/lit/demos/glue.html" target="_blank">Classification and regression models</a></div>
|
114 | 103 | <div class="demo-card-tags"> <span class="demo-tag"> BERT </span> <span class="demo-tag"> binary classification </span> <span class="demo-tag"> multi-class classification </span> <span class="demo-tag"> regression </span>
|
|
130 | 119 | </div>
|
131 | 120 | <div class="demo-card-copy">Use LIT directly inside a Colab notebook. Explore binary classification for sentiment analysis using SST2 from the General Language Understanding Evaluation (GLUE) benchmark suite.</div>
|
132 | 121 | <div class="demo-card-cta-button"><a href="https://colab.research.google.com/github/PAIR-code/lit/blob/main/lit_nlp/examples/notebooks/LIT_sentiment_classifier.ipynb"></a></div>
|
133 |
| -</div> |
134 |
| -<div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone"> |
135 |
| - <div class="demo-card-title"><a href="/lit/demos/coref.html" target="_blank">Gender bias in coreference systems</a></div> |
136 |
| - <div class="demo-card-tags"> <span class="demo-tag"> BERT </span> <span class="demo-tag"> coreference </span> <span class="demo-tag"> fairness </span> <span class="demo-tag"> Winogender </span> |
137 |
| - </div> |
138 |
| - <div class="demo-card-data-source-title">DATA SOURCES</div> |
139 |
| - <div class="demo-card-data-source"> |
140 |
| - Winogender schemas |
141 |
| - </div> |
142 |
| - <div class="demo-card-copy">Use LIT to explore gendered associations in a coreference system, which matches pronouns to their antecedents. This demo highlights how LIT can work with structured prediction models (edge classification), and its capability for disaggregated analysis.</div> |
143 |
| - <div class="demo-card-cta-button"><a href="/lit/demos/coref.html"></a></div> |
144 |
| -</div> |
145 |
| -<div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone"> |
146 |
| - <div class="demo-card-title"><a href="/lit/demos/lm.html" target="_blank">Fill in the blanks</a></div> |
147 |
| - <div class="demo-card-tags"> <span class="demo-tag"> BERT </span> <span class="demo-tag"> masked language model </span> |
148 |
| - </div> |
149 |
| - <div class="demo-card-data-source-title">DATA SOURCES</div> |
150 |
| - <div class="demo-card-data-source"> |
151 |
| - Stanford Sentiment Treebank, Movie Reviews |
152 |
| - </div> |
153 |
| - <div class="demo-card-copy">Explore a BERT-based masked-language model. See what tokens the model predicts should fill in the blank when any token from an example sentence is masked out.</div> |
154 |
| - <div class="demo-card-cta-button"><a href="/lit/demos/lm.html"></a></div> |
155 |
| -</div> |
156 |
| -<div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone"> |
157 |
| - <div class="demo-card-title"><a href="/lit/demos/t5.html" target="_blank">Text generation</a></div> |
158 |
| - <div class="demo-card-tags"> <span class="demo-tag"> T5 </span> <span class="demo-tag"> generation </span> |
159 |
| - </div> |
160 |
| - <div class="demo-card-data-source-title">DATA SOURCES</div> |
161 |
| - <div class="demo-card-data-source"> |
162 |
| - CNN / Daily Mail |
163 |
| - </div> |
164 |
| - <div class="demo-card-copy">Use a T5 model to summarize text. For any example of interest, quickly find similar examples from the training set, using an approximate nearest-neighbors index.</div> |
165 |
| - <div class="demo-card-cta-button"><a href="/lit/demos/t5.html"></a></div> |
166 |
| -</div> |
167 |
| -<div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone"> |
168 |
| - <div class="demo-card-title"><a href="/lit/demos/is_eval.html" target="_blank">Evaluating input salience methods</a></div> |
169 |
| - <div class="demo-card-tags"> <span class="demo-tag"> BERT </span> <span class="demo-tag"> salience </span> <span class="demo-tag"> evaluation </span> |
170 |
| - </div> |
171 |
| - <div class="demo-card-data-source-title">DATA SOURCES</div> |
172 |
| - <div class="demo-card-data-source"> |
173 |
| - Stanford Sentiment Treebank, Toxicity |
174 |
| - </div> |
175 |
| - <div class="demo-card-copy">Explore the faithfulness of input salience methods on a BERT-base model across different datasets and artificial shortcuts.</div> |
176 |
| - <div class="demo-card-cta-button"><a href="/lit/demos/is_eval.html"></a></div> |
177 | 122 | </div>
|
178 | 123 | </div>
|
179 | 124 | </div>
|
|
0 commit comments