Skip to content

关于转换的问题 #733

@NJX-njx

Description

@NJX-njx

我能理解这个项目是通过AST以及Matcher的机制来实现
但其实目前而言这种转换的话,我觉得直接通过AI来实现可能会更加的实际
还可以尽可能的避免转换中出现的问题,包括减少需要自行调整的情况
`import paddle

class MyNet(paddle.nn.Layer):
test = "str"

def __init__(self, num_classes=10):
    super(MyNet, self).__init__()
    # 将 mmcv.cnn.ConvModule(4, 6, (3, 3)) 替换为等价的 Conv2D
    # ConvModule 在未指定 norm/act 时等价于一个裸 conv
    self._conv = paddle.nn.Conv2D(in_channels=4, out_channels=6, kernel_size=(3, 3))
    self._pool = paddle.nn.MaxPool2D(kernel_size=2, stride=1)

    # 线性层保持一致
    self._fc1 = paddle.nn.Linear(in_features=6 * 25 * 25, out_features=120)
    self._fc2 = paddle.nn.Linear(in_features=120, out_features=84)
    self._fc3 = paddle.nn.Linear(in_features=84, out_features=num_classes)

def forward(self, x):
    x = self._conv(x)
    x = self._pool(x)

    x = self._fc1(paddle.flatten(x=x, start_axis=1))
    x = self._fc2(x)
    x = self._fc3(x)
    y = paddle.add(x=x, y=x)
    return y

net = MyNet()
sgd = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01, weight_decay=0.0)
tmp_lr = paddle.optimizer.lr.MultiStepDecay(milestones=[2, 4, 6], gamma=0.8, learning_rate=sgd.get_lr())
sgd.set_lr_scheduler(tmp_lr)
lr = tmp_lr

for i in range(10):
x = paddle.rand(shape=[8, 4, 28, 28])
out = net(x).sum()

sgd.clear_gradients(set_to_zero=False)
out.backward()
sgd.step()`

这是使用github上的copilot实现的转换,对比之下没有任何的问题

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions