|
2 | 2 | "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
3 | 3 | "name": "coronaryArtery_ct_segmentation", |
4 | 4 | "version": "1.0.0", |
5 | | - "monai_version": "1.4.0", |
| 5 | + "monai_version": "1.3.2", |
6 | 6 | "pytorch_version": "1.4.0", |
7 | 7 | "numpy_version": "2.3.1", |
8 | 8 | "required_packages_version": { |
9 | 9 | "fire": "0.7.0", |
10 | | - "PyYAML": "6.0.2", |
11 | | - "gdown": "5.2.0", |
| 10 | + "monai": " 1.4.0", |
12 | 11 | "nnunetv2": "2.6.0", |
13 | 12 | "nibabel": "5.3.2", |
| 13 | + "numpy": "2.3.1", |
14 | 14 | "numpy_stl": "3.2.0", |
15 | 15 | "pynrrd": "1.1.3", |
16 | 16 | "scipy": "1.16.0", |
|
63 | 63 | "0": "Coronary Artery (1 = target, 0 = background)" |
64 | 64 | } |
65 | 65 | } |
66 | | - }, |
67 | | - |
68 | | - "optional_packages_version": { |
69 | | - "monai": "1.3.2", |
70 | | - "torch": "2.7.0+cu126", |
71 | | - "numpy": "2.3.1" |
72 | 66 | } |
73 | 67 | } |
74 | 68 | } |
75 | | - |
76 | | - "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
77 | | - "name": "coronaryArtery_ct_segmentation", |
78 | | - "version": "1.0.0", |
79 | | - "monai_version": "1.4.0", |
80 | | - "pytorch_version": "1.4.0", |
81 | | - "numpy_version": "2.3.1", |
82 | | - "required_packages_version": { |
83 | | - "fire": "0.7.0", |
84 | | - "PyYAML": "6.0.2", |
85 | | - "gdown": "5.2.0", |
86 | | - "nnunetv2": "2.6.0", |
87 | | - "nibabel": "5.3.2", |
88 | | - "numpy_stl": "3.2.0", |
89 | | - "pynrrd": "1.1.3", |
90 | | - "scipy": "1.16.0", |
91 | | - "simpleitk": "2.5.0", |
92 | | - "scikit-image": "0.25.2", |
93 | | - "torch": "2.7.0+cu126", |
94 | | - "trimesh": "4.6.10", |
95 | | - "usd_core": "25.5.1", |
96 | | - "numpy-stl": "3.2.0" |
97 | | - }, |
98 | | - "task": "Coronary artery ct segmentation", |
99 | | - "description": "Coronsegmentator is an automated pipeline that performs dual-task segmentation on cardiac CT images, focusing on both whole-heart and coronary artery structures. It integrates MONAI Auto3DSeg for general cardiac segmentation and a custom nnU-Net model for detailed coronary artery segmentation. The pipeline further converts segmentation results (in STL format) into USD files for downstream 3D visualization and digital twin simulation using NVIDIA Omniverse.", |
100 | | - "authors": "Y. Ke, MC. Chen, TY. Lin, YC. Chan Foxconn Digital Health AI Team", |
101 | | - "copyright": "Copyright \u00a9 2025 Hon Hai Precision Industry Co.,Ltd. All rights reserved", |
102 | | - "data_source": "The ImageCAS dataset is publicly available at: https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.git", |
103 | | - "data_type": "nifti", |
104 | | - "image_classes": "3D volume data", |
105 | | - "label_classes": "single channel data, 1 is coronary artery, 0 is background", |
106 | | - "pred_classes": "2 channels OneHot data, channel 1 is coronary artery, channel 0 is background", |
107 | | - "intended_use": "This is an example, not to be used for diagnostic purposes", |
108 | | - "references": [ |
109 | | - "Zeng, An, et al. ImageCAS: A large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images. Computerized Medical Imaging and Graphics 109 (2023): 102287.", |
110 | | - "Isensee, Fabian, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18.2 (2021): 203-211." |
111 | | - ], |
112 | | - "network_data_format": { |
113 | | - "inputs": { |
114 | | - "image": { |
115 | | - "type": "image", |
116 | | - "format": "hounsfield", |
117 | | - "modality": "CT", |
118 | | - "num_channels": 1, |
119 | | - "spatial_shape": [ |
120 | | - 512, |
121 | | - 512, |
122 | | - 256 |
123 | | - ], |
124 | | - "dtype": "float32", |
125 | | - "value_range": [ |
126 | | - 0, |
127 | | - 1 |
128 | | - ], |
129 | | - "is_patch_data": true, |
130 | | - "channel_def": { |
131 | | - "0": "image" |
132 | | - } |
133 | | - } |
134 | | - }, |
135 | | - "outputs": { |
136 | | - "pred": { |
137 | | - "type": "usd", |
138 | | - "format": "segmentation", |
139 | | - "num_channels": 1, |
140 | | - "spatial_shape": [ |
141 | | - 512, |
142 | | - 512, |
143 | | - 256 |
144 | | - ], |
145 | | - "dtype": "float32", |
146 | | - "value_range": [ |
147 | | - 0, |
148 | | - 1 |
149 | | - ], |
150 | | - "channel_def": { |
151 | | - "0": "Coronary Artery (1 = target, 0 = background)" |
152 | | - } |
153 | | - } |
154 | | - }, |
155 | | - "optional_packages_version": { |
156 | | - "monai": "1.3.2", |
157 | | - "torch": "2.7.0+cu126", |
158 | | - "numpy": "2.3.1" |
159 | | - } |
160 | | - } |
161 | | -} |
0 commit comments