|
| 1 | +# Copyright (c) MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | + |
| 12 | +import os |
| 13 | +import shutil |
| 14 | +import sys |
| 15 | +import tempfile |
| 16 | +import unittest |
| 17 | + |
| 18 | +import matplotlib.pyplot as plt |
| 19 | +import numpy as np |
| 20 | +from monai.bundle import create_workflow |
| 21 | +from parameterized import parameterized |
| 22 | +from utils import check_workflow |
| 23 | + |
| 24 | +TEST_CASE_TRAIN = [{"bundle_root": "models/vista2d", "mode": "train", "train#trainer#max_epochs": 1}] |
| 25 | + |
| 26 | +TEST_CASE_INFER = [{"bundle_root": "models/vista2d", "mode": "infer"}] |
| 27 | + |
| 28 | + |
| 29 | +def test_order(test_name1, test_name2): |
| 30 | + def get_order(name): |
| 31 | + if "train" in name: |
| 32 | + return 1 |
| 33 | + if "infer" in name: |
| 34 | + return 2 |
| 35 | + return 3 |
| 36 | + |
| 37 | + return get_order(test_name1) - get_order(test_name2) |
| 38 | + |
| 39 | + |
| 40 | +class TestVista2d(unittest.TestCase): |
| 41 | + def setUp(self): |
| 42 | + self.dataset_dir = tempfile.mkdtemp() |
| 43 | + self.tmp_output_dir = os.path.join(self.dataset_dir, "output") |
| 44 | + os.makedirs(self.tmp_output_dir, exist_ok=True) |
| 45 | + self.dataset_size = 5 |
| 46 | + input_shape = (256, 256) |
| 47 | + for s in range(self.dataset_size): |
| 48 | + test_image = np.random.randint(low=0, high=2, size=input_shape).astype(np.int8) |
| 49 | + test_label = np.random.randint(low=0, high=2, size=input_shape).astype(np.int8) |
| 50 | + image_filename = os.path.join(self.dataset_dir, f"image_{s}.png") |
| 51 | + label_filename = os.path.join(self.dataset_dir, f"label_{s}.png") |
| 52 | + plt.imsave(image_filename, test_image, cmap="gray") |
| 53 | + plt.imsave(label_filename, test_label, cmap="gray") |
| 54 | + |
| 55 | + self.bundle_root = "models/vista2d" |
| 56 | + sys.path = [self.bundle_root] + sys.path |
| 57 | + from scripts.workflow import VistaCell |
| 58 | + |
| 59 | + self.workflow = VistaCell |
| 60 | + |
| 61 | + def tearDown(self): |
| 62 | + shutil.rmtree(self.dataset_dir) |
| 63 | + |
| 64 | + @parameterized.expand([TEST_CASE_INFER]) |
| 65 | + def test_infer_config(self, override): |
| 66 | + # update override with dataset dir |
| 67 | + override["dataset#data"] = [ |
| 68 | + { |
| 69 | + "image": os.path.join(self.dataset_dir, f"image_{s}.png"), |
| 70 | + "label": os.path.join(self.dataset_dir, f"label_{s}.png"), |
| 71 | + } |
| 72 | + for s in range(self.dataset_size) |
| 73 | + ] |
| 74 | + override["output_dir"] = self.tmp_output_dir |
| 75 | + workflow = create_workflow( |
| 76 | + workflow_name=self.workflow, |
| 77 | + config_file=os.path.join(self.bundle_root, "configs/hyper_parameters.yaml"), |
| 78 | + meta_file=os.path.join(self.bundle_root, "configs/metadata.json"), |
| 79 | + **override, |
| 80 | + ) |
| 81 | + |
| 82 | + # check_properties=False, need to add monai service properties later |
| 83 | + check_workflow(workflow, check_properties=False) |
| 84 | + |
| 85 | + expected_output_file = os.path.join(self.tmp_output_dir, f"image_{self.dataset_size-1}.tif") |
| 86 | + self.assertTrue(os.path.isfile(expected_output_file)) |
| 87 | + |
| 88 | + @parameterized.expand([TEST_CASE_TRAIN]) |
| 89 | + def test_train_config(self, override): |
| 90 | + # update override with dataset dir |
| 91 | + override["train#dataset#data"] = [ |
| 92 | + { |
| 93 | + "image": os.path.join(self.dataset_dir, f"image_{s}.png"), |
| 94 | + "label": os.path.join(self.dataset_dir, f"label_{s}.png"), |
| 95 | + } |
| 96 | + for s in range(self.dataset_size) |
| 97 | + ] |
| 98 | + override["dataset#data"] = override["train#dataset#data"] |
| 99 | + |
| 100 | + workflow = create_workflow( |
| 101 | + workflow_name=self.workflow, |
| 102 | + config_file=os.path.join(self.bundle_root, "configs/hyper_parameters.yaml"), |
| 103 | + meta_file=os.path.join(self.bundle_root, "configs/metadata.json"), |
| 104 | + **override, |
| 105 | + ) |
| 106 | + |
| 107 | + # check_properties=False, need to add monai service properties later |
| 108 | + check_workflow(workflow, check_properties=False) |
| 109 | + |
| 110 | + # follow up to use trained weights and test eval |
| 111 | + override["mode"] = "eval" |
| 112 | + override["pretrained_ckpt_name"] = "model.pt" |
| 113 | + workflow = create_workflow( |
| 114 | + workflow_name=self.workflow, |
| 115 | + config_file=os.path.join(self.bundle_root, "configs/hyper_parameters.yaml"), |
| 116 | + meta_file=os.path.join(self.bundle_root, "configs/metadata.json"), |
| 117 | + **override, |
| 118 | + ) |
| 119 | + check_workflow(workflow, check_properties=False) |
| 120 | + |
| 121 | + |
| 122 | +if __name__ == "__main__": |
| 123 | + loader = unittest.TestLoader() |
| 124 | + loader.sortTestMethodsUsing = test_order |
| 125 | + unittest.main(testLoader=loader) |
0 commit comments