|
1 | 1 | { |
2 | | - "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
3 | | - "name": "coronaryArtery_ct_segmentation", |
4 | | - "version": "1.0.0", |
5 | | - "monai_version": "1.3.2", |
6 | | - "pytorch_version": "2.7.0", |
7 | | - "numpy_version": "2.3.1", |
8 | | - "required_packages_version": { |
9 | | - "fire": "0.7.0", |
10 | | - "monai": " 1.4.0", |
11 | | - "nnunetv2": "2.6.0", |
12 | | - "nibabel": "5.3.2", |
13 | | - "numpy": "2.3.1", |
14 | | - "numpy_stl": "3.2.0", |
15 | | - "pynrrd": "1.1.3", |
16 | | - "scipy": "1.16.0", |
17 | | - "simpleitk": "2.5.0", |
18 | | - "scikit-image": "0.25.2", |
19 | | - "torch": "2.7.0+cu126", |
20 | | - "trimesh": "4.6.10", |
21 | | - "usd_core": "25.5.1", |
22 | | - "numpy-stl": "3.2.0" |
23 | | - }, |
24 | | - "task": "Coronary artery ct segmentation", |
25 | | - "description": "Coronsegmentator is an automated pipeline that performs dual-task segmentation on cardiac CT images, focusing on both whole-heart and coronary artery structures. It integrates MONAI Auto3DSeg for general cardiac segmentation and a custom nnU-Net model for detailed coronary artery segmentation. The pipeline further converts segmentation results (in STL format) into USD files for downstream 3D visualization and digital twin simulation using NVIDIA Omniverse.", |
26 | | - "authors": "Y. Ke, MC. Chen, TY. Lin, YC. Chan Foxconn Digital Health AI Team", |
27 | | - "copyright": "Copyright \u00a9 2025 Hon Hai Precision Industry Co.,Ltd. All rights reserved", |
28 | | - "data_source": "The ImageCAS dataset is publicly available at: https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.git", |
29 | | - "data_type": "nifti", |
30 | | - "image_classes": "3D volume data", |
31 | | - "label_classes": "single channel data, 1 is coronary artery, 0 is background", |
32 | | - "pred_classes": "2 channels OneHot data, channel 1 is coronary artery, channel 0 is background", |
33 | | - "intended_use": "This is an example, not to be used for diagnostic purposes", |
34 | | - "references": [ |
35 | | - "Zeng, An, et al. ImageCAS: A large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images. Computerized Medical Imaging and Graphics 109 (2023): 102287.", |
36 | | - "Isensee, Fabian, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18.2 (2021): 203-211." |
37 | | - ], |
38 | | - "network_data_format": { |
39 | | - "inputs": { |
40 | | - "image": { |
41 | | - "type": "image", |
42 | | - "format": "hounsfield", |
43 | | - "modality": "CT", |
44 | | - "num_channels": 1, |
45 | | - "spatial_shape": [512, 512, 256], |
46 | | - "dtype": "float32", |
47 | | - "value_range": [0, 1], |
48 | | - "is_patch_data": true, |
49 | | - "channel_def": { |
50 | | - "0": "image" |
51 | | - } |
52 | | - } |
| 2 | + "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
| 3 | + "name": "coronaryArtery_ct_segmentation", |
| 4 | + "version": "1.0.0", |
| 5 | + "monai_version": "1.3.2", |
| 6 | + "pytorch_version": "2.7.0", |
| 7 | + "numpy_version": "2.3.1", |
| 8 | + "required_packages_version": { |
| 9 | + "fire": "0.7.0", |
| 10 | + "monai": " 1.4.0", |
| 11 | + "nnunetv2": "2.6.0", |
| 12 | + "nibabel": "5.3.2", |
| 13 | + "numpy": "2.3.1", |
| 14 | + "numpy_stl": "3.2.0", |
| 15 | + "pynrrd": "1.1.3", |
| 16 | + "scipy": "1.16.0", |
| 17 | + "simpleitk": "2.5.0", |
| 18 | + "scikit-image": "0.25.2", |
| 19 | + "torch": "2.7.0+cu126", |
| 20 | + "trimesh": "4.6.10", |
| 21 | + "usd_core": "25.5.1", |
| 22 | + "numpy-stl": "3.2.0" |
53 | 23 | }, |
54 | | - "outputs": { |
55 | | - "pred": { |
56 | | - "type": "usd", |
57 | | - "format": "segmentation", |
58 | | - "num_channels": 1, |
59 | | - "spatial_shape": [512, 512, 256], |
60 | | - "dtype": "float32", |
61 | | - "value_range": [0, 1], |
62 | | - "channel_def": { |
63 | | - "0": "Coronary Artery (1 = target, 0 = background)" |
| 24 | + "task": "Coronary artery ct segmentation", |
| 25 | + "description": "Coronsegmentator is an automated pipeline that performs dual-task segmentation on cardiac CT images, focusing on both whole-heart and coronary artery structures. It integrates MONAI Auto3DSeg for general cardiac segmentation and a custom nnU-Net model for detailed coronary artery segmentation. The pipeline further converts segmentation results (in STL format) into USD files for downstream 3D visualization and digital twin simulation using NVIDIA Omniverse.", |
| 26 | + "authors": "Y. Ke, MC. Chen, TY. Lin, YC. Chan Foxconn Digital Health AI Team", |
| 27 | + "copyright": "Copyright \u00a9 2025 Hon Hai Precision Industry Co.,Ltd. All rights reserved", |
| 28 | + "data_source": "The ImageCAS dataset is publicly available at: https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.git", |
| 29 | + "data_type": "nifti", |
| 30 | + "image_classes": "3D volume data", |
| 31 | + "label_classes": "single channel data, 1 is coronary artery, 0 is background", |
| 32 | + "pred_classes": "2 channels OneHot data, channel 1 is coronary artery, channel 0 is background", |
| 33 | + "intended_use": "This is an example, not to be used for diagnostic purposes", |
| 34 | + "references": [ |
| 35 | + "Zeng, An, et al. ImageCAS: A large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images. Computerized Medical Imaging and Graphics 109 (2023): 102287.", |
| 36 | + "Isensee, Fabian, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18.2 (2021): 203-211." |
| 37 | + ], |
| 38 | + "network_data_format": { |
| 39 | + "inputs": { |
| 40 | + "image": { |
| 41 | + "type": "image", |
| 42 | + "format": "hounsfield", |
| 43 | + "modality": "CT", |
| 44 | + "num_channels": 1, |
| 45 | + "spatial_shape": [ |
| 46 | + 512, |
| 47 | + 512, |
| 48 | + 256 |
| 49 | + ], |
| 50 | + "dtype": "float32", |
| 51 | + "value_range": [ |
| 52 | + 0, |
| 53 | + 1 |
| 54 | + ], |
| 55 | + "is_patch_data": true, |
| 56 | + "channel_def": { |
| 57 | + "0": "image" |
| 58 | + } |
| 59 | + } |
| 60 | + }, |
| 61 | + "outputs": { |
| 62 | + "pred": { |
| 63 | + "type": "usd", |
| 64 | + "format": "segmentation", |
| 65 | + "num_channels": 1, |
| 66 | + "spatial_shape": [ |
| 67 | + 512, |
| 68 | + 512, |
| 69 | + 256 |
| 70 | + ], |
| 71 | + "dtype": "float32", |
| 72 | + "value_range": [ |
| 73 | + 0, |
| 74 | + 1 |
| 75 | + ], |
| 76 | + "channel_def": { |
| 77 | + "0": "Coronary Artery (1 = target, 0 = background)" |
| 78 | + } |
| 79 | + } |
64 | 80 | } |
65 | | - } |
66 | 81 | } |
67 | | - } |
68 | 82 | } |
0 commit comments