@@ -10,9 +10,9 @@ This documentation includes information for running the popular Llama 3.1 series
1010
1111The pre-built image includes:
1212
13- - ROCm™ 6.3 .1
13+ - ROCm™ 6.4 .1
1414- HipblasLT 0.15
15- - vLLM 0.8.5
15+ - vLLM 0.9.0.1
1616- PyTorch 2.7
1717
1818## Pull latest Docker Image
@@ -21,10 +21,14 @@ Pull the most recent validated docker image with `docker pull rocm/vllm-dev:main
2121
2222## What is New
2323
24- - AITER V1 engine performance improvement
24+ - Updated to ROCm 6.4.1 and vLLM v0.9.0.1
25+ - AITER MHA
26+ - IBM 3d kernel for unified attention
27+ - Full graph capture for split attention
2528
2629## Known Issues and Workarounds
27- - None
30+
31+ - No AITER MoE. Do not use VLLM_ROCM_USE_AITER for Mixtral or DeepSeek models.
2832
2933## Performance Results
3034
@@ -37,14 +41,14 @@ The table below shows performance data where a local inference client is fed req
3741
3842| Model | Precision | TP Size | Input | Output | Num Prompts | Max Num Seqs | Throughput (tokens/s) |
3943| -------| -----------| ---------| -------| --------| -------------| --------------| -----------------------|
40- | Llama 3.1 70B (amd/Llama-3.1-70B-Instruct-FP8-KV) | FP8 | 8 | 128 | 2048 | 3200 | 3200 | 16622.2 |
41- | | | | 128 | 4096 | 1500 | 1500 | 13779.8 |
42- | | | | 500 | 2000 | 2000 | 2000 | 13424.9 |
43- | | | | 2048 | 2048 | 1500 | 1500 | 8356.5 |
44- | Llama 3.1 405B (amd/Llama-3.1-405B-Instruct-FP8-KV) | FP8 | 8 | 128 | 2048 | 1500 | 1500 | 4243.9 |
45- | | | | 128 | 4096 | 1500 | 1500 | 3394.4 |
46- | | | | 500 | 2000 | 2000 | 2000 | 3201.8 |
47- | | | | 2048 | 2048 | 500 | 500 | 2208.0 |
44+ | Llama 3.1 70B (amd/Llama-3.1-70B-Instruct-FP8-KV) | FP8 | 8 | 128 | 2048 | 3200 | 3200 | 16581.5 |
45+ | | | | 128 | 4096 | 1500 | 1500 | 13667.3 |
46+ | | | | 500 | 2000 | 2000 | 2000 | 13367.1 |
47+ | | | | 2048 | 2048 | 1500 | 1500 | 8352.6 |
48+ | Llama 3.1 405B (amd/Llama-3.1-405B-Instruct-FP8-KV) | FP8 | 8 | 128 | 2048 | 1500 | 1500 | 4275.0 |
49+ | | | | 128 | 4096 | 1500 | 1500 | 3356.7 |
50+ | | | | 500 | 2000 | 2000 | 2000 | 3201.4 |
51+ | | | | 2048 | 2048 | 500 | 500 | 2179.7 |
4852
4953* TP stands for Tensor Parallelism.*
5054
@@ -54,38 +58,38 @@ The table below shows latency measurement, which typically involves assessing th
5458
5559| Model | Precision | TP Size | Batch Size | Input | Output | MI300X Latency (sec) |
5660| -------| -----------| ----------| ------------| --------| ---------| -------------------|
57- | Llama 3.1 70B (amd/Llama-3.1-70B-Instruct-FP8-KV) | FP8 | 8 | 1 | 128 | 2048 | 15.851 |
58- | | | | 2 | 128 | 2048 | 16.995 |
59- | | | | 4 | 128 | 2048 | 17.578 |
60- | | | | 8 | 128 | 2048 | 19.277 |
61- | | | | 16 | 128 | 2048 | 21.111 |
62- | | | | 32 | 128 | 2048 | 23.902 |
63- | | | | 64 | 128 | 2048 | 30.976 |
64- | | | | 128 | 128 | 2048 | 44.107 |
65- | | | | 1 | 2048 | 2048 | 15.981 |
66- | | | | 2 | 2048 | 2048 | 17.322 |
67- | | | | 4 | 2048 | 2048 | 18.025 |
68- | | | | 8 | 2048 | 2048 | 20.218 |
69- | | | | 16 | 2048 | 2048 | 22.690 |
70- | | | | 32 | 2048 | 2048 | 27.407 |
71- | | | | 64 | 2048 | 2048 | 37.099 |
72- | | | | 128 | 2048 | 2048 | 56.659 |
73- | Llama 3.1 405B (amd/Llama-3.1-405B-Instruct-FP8-KV) | FP8 | 8 | 1 | 128 | 2048 | 45.929 |
74- | | | | 2 | 128 | 2048 | 46.871 |
75- | | | | 4 | 128 | 2048 | 48.763 |
76- | | | | 8 | 128 | 2048 | 51.621 |
77- | | | | 16 | 128 | 2048 | 54.822 |
78- | | | | 32 | 128 | 2048 | 63.642 |
79- | | | | 64 | 128 | 2048 | 82.256 |
80- | | | | 128 | 128 | 2048 | 110.142 |
81- | | | | 1 | 2048 | 2048 | 46.489 |
82- | | | | 2 | 2048 | 2048 | 47.465 |
83- | | | | 4 | 2048 | 2048 | 49.906 |
84- | | | | 8 | 2048 | 2048 | 54.252 |
85- | | | | 16 | 2048 | 2048 | 60.275 |
86- | | | | 32 | 2048 | 2048 | 74.346 |
87- | | | | 64 | 2048 | 2048 | 104.508 |
88- | | | | 128 | 2048 | 2048 | 154.134 |
61+ | Llama 3.1 70B (amd/Llama-3.1-70B-Instruct-FP8-KV) | FP8 | 8 | 1 | 128 | 2048 | 15.566 |
62+ | | | | 2 | 128 | 2048 | 16.858 |
63+ | | | | 4 | 128 | 2048 | 17.518 |
64+ | | | | 8 | 128 | 2048 | 18.898 |
65+ | | | | 16 | 128 | 2048 | 21.023 |
66+ | | | | 32 | 128 | 2048 | 23.896 |
67+ | | | | 64 | 128 | 2048 | 30.753 |
68+ | | | | 128 | 128 | 2048 | 43.767 |
69+ | | | | 1 | 2048 | 2048 | 15.496 |
70+ | | | | 2 | 2048 | 2048 | 17.380 |
71+ | | | | 4 | 2048 | 2048 | 17.983 |
72+ | | | | 8 | 2048 | 2048 | 19.771 |
73+ | | | | 16 | 2048 | 2048 | 22.702 |
74+ | | | | 32 | 2048 | 2048 | 27.392 |
75+ | | | | 64 | 2048 | 2048 | 36.879 |
76+ | | | | 128 | 2048 | 2048 | 57.003 |
77+ | Llama 3.1 405B (amd/Llama-3.1-405B-Instruct-FP8-KV) | FP8 | 8 | 1 | 128 | 2048 | 45.828 |
78+ | | | | 2 | 128 | 2048 | 46.757 |
79+ | | | | 4 | 128 | 2048 | 48.322 |
80+ | | | | 8 | 128 | 2048 | 51.479 |
81+ | | | | 16 | 128 | 2048 | 54.861 |
82+ | | | | 32 | 128 | 2048 | 63.119 |
83+ | | | | 64 | 128 | 2048 | 82.362 |
84+ | | | | 128 | 128 | 2048 | 109.698 |
85+ | | | | 1 | 2048 | 2048 | 46.514 |
86+ | | | | 2 | 2048 | 2048 | 47.271 |
87+ | | | | 4 | 2048 | 2048 | 49.679 |
88+ | | | | 8 | 2048 | 2048 | 54.366 |
89+ | | | | 16 | 2048 | 2048 | 60.390 |
90+ | | | | 32 | 2048 | 2048 | 74.209 |
91+ | | | | 64 | 2048 | 2048 | 104.728 |
92+ | | | | 128 | 2048 | 2048 | 154.041 |
8993
9094* TP stands for Tensor Parallelism.*
9195
@@ -487,7 +491,7 @@ To reproduce the release docker:
487491``` bash
488492 git clone https://github.com/ROCm/vllm.git
489493 cd vllm
490- git checkout 91a56009841e11b84a2aeb9cc5aa305ab2808ede
494+ git checkout 71faa188073d427c57862c45bf17745f3b54b1b1
491495 docker build -f docker/Dockerfile.rocm -t < your_tag> --build-arg USE_CYTHON=1 .
492496```
493497
@@ -504,6 +508,12 @@ Use AITER release candidate branch instead:
504508
505509## Changelog
506510
511+ 20250605_aiter:
512+ - Updated to ROCm 6.4.1 and vLLM v0.9.0.1
513+ - AITER MHA
514+ - IBM 3d kernel for unified attention
515+ - Full graph capture for split attention
516+
50751720250521_aiter:
508518- AITER V1 engine performance improvement
509519
0 commit comments