Skip to content

The Chern number of the Haldane model #206

@xlhuang-phy

Description

@xlhuang-phy

Dear developer,

I calculated the Chern number of the Haldane model using software and found it to be incorrect. I am using the Haldane model provided in the book "Topological Insulators - Dirac Equation in Condensed Matters", which is not in Bloch form. However, I believe that the Chern number is not related to the gauge. I don't know where the reason lies or what parameters should be set. Here is my code and results.

import z2pack
import numpy as np

identity=np.identity(2,dtype=complex)
pauli_x=np.array([[0,1],[1,0]],dtype=complex)
pauli_y=np.array([[0,-1j],[1j,0]],dtype=complex)
pauli_z=np.array([[1,0],[0,-1]],dtype=complex)

def Hamilton(k,M,t1,t2,phi):
    a=1
    a1=np.array([0,1]);a2=np.array([-np.sqrt(3)*a/2,-a/2]);a3=np.array([np.sqrt(3)*a/2,-a/2]);
    b1=a2-a3;b2=a3-a1;b3=a1-a2;
    epsilon=2*t2*np.cos(phi)*(np.cos(np.dot(k,b1))+np.cos(np.dot(k,b2))+np.cos(np.dot(k,b3)))
    dx=t1*(np.cos(np.dot(k,a1))+np.cos(np.dot(k,a2))+np.cos(np.dot(k,a3)))
    dy=t1*(np.sin(np.dot(k,a1))+np.sin(np.dot(k,a2))+np.sin(np.dot(k,a3)))
    dz=M-2*t2*np.sin(phi)*(np.sin(np.dot(k,b1))+np.sin(np.dot(k,b2))+np.sin(np.dot(k,b3)))
    H=epsilon*identity+dx*pauli_x+dy*pauli_y+dz*pauli_z 
    return H

system=z2pack.hm.System(
    lambda k:Hamilton(k,0.1,1,0.2,0.2*np.pi),
    #lambda k:Hamilton(k,0.5,1.,1./3,0.5*np.pi),
    #lambda k:Hamilton(k,0.5,1.,1./3,-0.5*np.pi),
    bands=1,
    dim=2
)

result=z2pack.surface.run(
    system=system,
    surface=lambda s,t:[t,s],
    min_neighbour_dist=1e-5
)

print('Chern number:',z2pack.invariant.chern(result))

Chern number: 0.000314335120135396

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions