|
| 1 | +// Example demonstrating SST (Super Simple Tasker) on RP2350 (Crea8 board). |
| 2 | +// |
| 3 | +// Build with: |
| 4 | +// tinygo build -target=crea8-sst -o firmware.uf2 ./examples/crea8-sst |
| 5 | +// |
| 6 | +// This example shows: |
| 7 | +// - Run-to-completion task model |
| 8 | +// - Event-driven programming |
| 9 | +// - Priority-based preemption |
| 10 | +// - Timer-based periodic events |
| 11 | +// - Single shared stack (minimal memory) |
| 12 | +// |
| 13 | +// SST is ideal for hard real-time applications like stepper motor control. |
| 14 | + |
| 15 | +package main |
| 16 | + |
| 17 | +import ( |
| 18 | + "machine" |
| 19 | + "runtime" |
| 20 | +) |
| 21 | + |
| 22 | +// Event signals (user signals start at SIG_USER) |
| 23 | +const ( |
| 24 | + SIG_STEP = runtime.SIG_USER + iota // Stepper step event |
| 25 | + SIG_TEMP_READ // Temperature read event |
| 26 | + SIG_SERIAL_RX // Serial receive event |
| 27 | + SIG_DISPLAY // Display update event |
| 28 | + SIG_HEARTBEAT // LED heartbeat event |
| 29 | +) |
| 30 | + |
| 31 | +// Task priorities (0 = highest) |
| 32 | +const ( |
| 33 | + PRIO_STEPPER = 0 // Highest - stepper timing critical |
| 34 | + PRIO_SERIAL = 1 // High - responsive serial handling |
| 35 | + PRIO_TEMP = 2 // Medium - temperature control |
| 36 | + PRIO_DISPLAY = 3 // Lower - display updates |
| 37 | + PRIO_HEARTBEAT = 4 // Lowest - LED blink |
| 38 | +) |
| 39 | + |
| 40 | +// Task state (shared - SST tasks can access directly since no preemption within task) |
| 41 | +var ( |
| 42 | + stepperX int32 |
| 43 | + stepperY int32 |
| 44 | + stepperZ int32 |
| 45 | + stepperE int32 |
| 46 | + |
| 47 | + targetX int32 = 1000 |
| 48 | + targetY int32 = 1000 |
| 49 | + |
| 50 | + hotendTemp int16 = 25 |
| 51 | + bedTemp int16 = 25 |
| 52 | + targetHotend int16 = 200 |
| 53 | + targetBed int16 = 60 |
| 54 | + |
| 55 | + ledState bool |
| 56 | +) |
| 57 | + |
| 58 | +// SST Tasks |
| 59 | +var ( |
| 60 | + stepperTask *runtime.SSTTask |
| 61 | + serialTask *runtime.SSTTask |
| 62 | + tempTask *runtime.SSTTask |
| 63 | + displayTask *runtime.SSTTask |
| 64 | + heartbeatTask *runtime.SSTTask |
| 65 | +) |
| 66 | + |
| 67 | +func main() { |
| 68 | + // Configure pins |
| 69 | + machine.LED.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 70 | + machine.STEPPER_X_STEP.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 71 | + machine.STEPPER_X_DIR.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 72 | + machine.STEPPER_Y_STEP.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 73 | + machine.STEPPER_Y_DIR.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 74 | + machine.HEATER_HOTEND.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 75 | + machine.HEATER_BED.Configure(machine.PinConfig{Mode: machine.PinOutput}) |
| 76 | + |
| 77 | + // Set tick rate (10kHz for 100us resolution - good for steppers) |
| 78 | + runtime.SSTSetTickRate(10000) |
| 79 | + |
| 80 | + println("Crea8 SST Demo") |
| 81 | + println("==============") |
| 82 | + println("Tick rate:", runtime.SSTGetTickRate(), "Hz") |
| 83 | + |
| 84 | + // Create tasks (priority, handler) |
| 85 | + stepperTask = runtime.SSTTaskCreate(PRIO_STEPPER, stepperHandler) |
| 86 | + serialTask = runtime.SSTTaskCreate(PRIO_SERIAL, serialHandler) |
| 87 | + tempTask = runtime.SSTTaskCreate(PRIO_TEMP, tempHandler) |
| 88 | + displayTask = runtime.SSTTaskCreate(PRIO_DISPLAY, displayHandler) |
| 89 | + heartbeatTask = runtime.SSTTaskCreate(PRIO_HEARTBEAT, heartbeatHandler) |
| 90 | + |
| 91 | + // Arm periodic timers |
| 92 | + // Stepper: every 1 tick (100us) for 10kHz step rate |
| 93 | + runtime.SSTTimerArm(stepperTask, SIG_STEP, 0, 1, 1) |
| 94 | + |
| 95 | + // Temperature: every 1000 ticks (100ms) |
| 96 | + runtime.SSTTimerArm(tempTask, SIG_TEMP_READ, 0, 1000, 1000) |
| 97 | + |
| 98 | + // Display: every 10000 ticks (1s) |
| 99 | + runtime.SSTTimerArm(displayTask, SIG_DISPLAY, 0, 10000, 10000) |
| 100 | + |
| 101 | + // Heartbeat: every 5000 ticks (500ms) |
| 102 | + runtime.SSTTimerArm(heartbeatTask, SIG_HEARTBEAT, 0, 5000, 5000) |
| 103 | + |
| 104 | + // Set idle callback |
| 105 | + runtime.SSTSetIdleCallback(idleCallback) |
| 106 | + |
| 107 | + // The SST scheduler takes over from here |
| 108 | + // (run() is called automatically by the runtime) |
| 109 | + select {} // Never reached |
| 110 | +} |
| 111 | + |
| 112 | +// stepperHandler - highest priority, runs to completion |
| 113 | +// Generates step pulses for motion control |
| 114 | +func stepperHandler(e *runtime.Event) { |
| 115 | + switch e.Signal { |
| 116 | + case runtime.SIG_INIT: |
| 117 | + println("Stepper task initialized") |
| 118 | + |
| 119 | + case SIG_STEP: |
| 120 | + // Generate step pulses if we need to move |
| 121 | + stepped := false |
| 122 | + |
| 123 | + if stepperX < targetX { |
| 124 | + machine.STEPPER_X_DIR.High() |
| 125 | + machine.STEPPER_X_STEP.High() |
| 126 | + stepperX++ |
| 127 | + stepped = true |
| 128 | + } else if stepperX > targetX { |
| 129 | + machine.STEPPER_X_DIR.Low() |
| 130 | + machine.STEPPER_X_STEP.High() |
| 131 | + stepperX-- |
| 132 | + stepped = true |
| 133 | + } |
| 134 | + |
| 135 | + if stepperY < targetY { |
| 136 | + machine.STEPPER_Y_DIR.High() |
| 137 | + machine.STEPPER_Y_STEP.High() |
| 138 | + stepperY++ |
| 139 | + stepped = true |
| 140 | + } else if stepperY > targetY { |
| 141 | + machine.STEPPER_Y_DIR.Low() |
| 142 | + machine.STEPPER_Y_STEP.High() |
| 143 | + stepperY-- |
| 144 | + stepped = true |
| 145 | + } |
| 146 | + |
| 147 | + // Small delay for pulse width, then lower step pins |
| 148 | + if stepped { |
| 149 | + // Inline delay (~1-2us) |
| 150 | + for i := 0; i < 10; i++ { |
| 151 | + // Busy loop for minimum pulse width |
| 152 | + } |
| 153 | + machine.STEPPER_X_STEP.Low() |
| 154 | + machine.STEPPER_Y_STEP.Low() |
| 155 | + } |
| 156 | + } |
| 157 | + // Task returns here (run-to-completion) |
| 158 | +} |
| 159 | + |
| 160 | +// serialHandler - handles serial communication |
| 161 | +func serialHandler(e *runtime.Event) { |
| 162 | + switch e.Signal { |
| 163 | + case runtime.SIG_INIT: |
| 164 | + println("Serial task initialized") |
| 165 | + // Setup serial RX interrupt to post events |
| 166 | + // (simplified - real implementation would use UART IRQ) |
| 167 | + |
| 168 | + case SIG_SERIAL_RX: |
| 169 | + // Process received data |
| 170 | + buf := make([]byte, 64) |
| 171 | + n, _ := machine.Serial.Read(buf) |
| 172 | + if n > 0 { |
| 173 | + processGCode(buf[:n]) |
| 174 | + } |
| 175 | + } |
| 176 | +} |
| 177 | + |
| 178 | +// tempHandler - temperature control |
| 179 | +func tempHandler(e *runtime.Event) { |
| 180 | + switch e.Signal { |
| 181 | + case runtime.SIG_INIT: |
| 182 | + println("Temperature task initialized") |
| 183 | + |
| 184 | + case SIG_TEMP_READ: |
| 185 | + // Read temperatures (simplified - would use ADC) |
| 186 | + hotendTemp = readADCTemp(machine.TEMP_HOTEND_ADC) |
| 187 | + bedTemp = readADCTemp(machine.TEMP_BED_ADC) |
| 188 | + |
| 189 | + // Bang-bang control (real implementation would use PID) |
| 190 | + if hotendTemp < targetHotend-2 { |
| 191 | + machine.HEATER_HOTEND.High() |
| 192 | + } else if hotendTemp > targetHotend+2 { |
| 193 | + machine.HEATER_HOTEND.Low() |
| 194 | + } |
| 195 | + |
| 196 | + if bedTemp < targetBed-2 { |
| 197 | + machine.HEATER_BED.High() |
| 198 | + } else if bedTemp > targetBed+2 { |
| 199 | + machine.HEATER_BED.Low() |
| 200 | + } |
| 201 | + } |
| 202 | +} |
| 203 | + |
| 204 | +// displayHandler - display/status updates |
| 205 | +func displayHandler(e *runtime.Event) { |
| 206 | + switch e.Signal { |
| 207 | + case runtime.SIG_INIT: |
| 208 | + println("Display task initialized") |
| 209 | + |
| 210 | + case SIG_DISPLAY: |
| 211 | + println("Position X:", stepperX, "Y:", stepperY) |
| 212 | + println("Temp H:", hotendTemp, "/", targetHotend, "B:", bedTemp, "/", targetBed) |
| 213 | + println("Tick:", runtime.SSTGetTickCount()) |
| 214 | + println("---") |
| 215 | + } |
| 216 | +} |
| 217 | + |
| 218 | +// heartbeatHandler - LED blink to show system is alive |
| 219 | +func heartbeatHandler(e *runtime.Event) { |
| 220 | + switch e.Signal { |
| 221 | + case runtime.SIG_INIT: |
| 222 | + println("Heartbeat task initialized") |
| 223 | + |
| 224 | + case SIG_HEARTBEAT: |
| 225 | + ledState = !ledState |
| 226 | + if ledState { |
| 227 | + machine.LED.High() |
| 228 | + } else { |
| 229 | + machine.LED.Low() |
| 230 | + } |
| 231 | + } |
| 232 | +} |
| 233 | + |
| 234 | +// idleCallback - called when no tasks have pending events |
| 235 | +func idleCallback() { |
| 236 | + // Check for serial data and post event if available |
| 237 | + if machine.Serial.Buffered() > 0 { |
| 238 | + event := runtime.Event{Signal: SIG_SERIAL_RX} |
| 239 | + serialTask.Post(&event) |
| 240 | + } |
| 241 | + |
| 242 | + // Could enter low-power mode here |
| 243 | + // arm.Asm("wfe") |
| 244 | +} |
| 245 | + |
| 246 | +// processGCode processes G-code commands (simplified) |
| 247 | +func processGCode(data []byte) { |
| 248 | + if len(data) == 0 { |
| 249 | + return |
| 250 | + } |
| 251 | + |
| 252 | + switch data[0] { |
| 253 | + case 'G': |
| 254 | + // Movement commands |
| 255 | + if len(data) > 1 { |
| 256 | + switch data[1] { |
| 257 | + case '0', '1': // G0/G1 - linear move |
| 258 | + // Parse X, Y, Z, E parameters (simplified) |
| 259 | + println("G-code move command") |
| 260 | + targetX += 100 |
| 261 | + targetY += 100 |
| 262 | + case '2', '8': // G28 - home |
| 263 | + println("G-code home command") |
| 264 | + targetX = 0 |
| 265 | + targetY = 0 |
| 266 | + } |
| 267 | + } |
| 268 | + |
| 269 | + case 'M': |
| 270 | + // Machine commands |
| 271 | + if len(data) > 1 { |
| 272 | + switch data[1] { |
| 273 | + case '1': // M104/M109 - set hotend temp |
| 274 | + println("M-code hotend temp") |
| 275 | + targetHotend = 200 |
| 276 | + case '4': // M140 - set bed temp |
| 277 | + println("M-code bed temp") |
| 278 | + targetBed = 60 |
| 279 | + } |
| 280 | + } |
| 281 | + } |
| 282 | +} |
| 283 | + |
| 284 | +// readADCTemp reads temperature from ADC pin (simplified) |
| 285 | +func readADCTemp(pin machine.Pin) int16 { |
| 286 | + // Simplified - real implementation would use ADC |
| 287 | + return 25 // Room temperature |
| 288 | +} |
| 289 | + |
| 290 | +// PostStepEvent can be called from ISR to trigger step |
| 291 | +func PostStepEvent() { |
| 292 | + stepperTask.PostFromISR(SIG_STEP, 0) |
| 293 | +} |
0 commit comments