# Input
user_idx = 75
model.recommend(user_idx, sparse_item_user, N=10)
# output
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[164], line 2
1 user_idx = 75
----> 2 model.recommend(user_idx, sparse_item_user, N=10)
File C:\anaconda3\Lib\site-packages\implicit\cpu\matrix_factorization_base.py:49, in MatrixFactorizationBase.recommend(self, userid, user_items, N, filter_already_liked_items, filter_items, recalculate_user, items)
47 user_count = 1 if np.isscalar(userid) else len(userid)
48 if user_items.shape[0] != user_count:
---> 49 raise ValueError("user_items must contain 1 row for every user in userids")
51 user = self._user_factor(userid, user_items, recalculate_user)
53 item_factors = self.item_factors
ValueError: user_items must contain 1 row for every user in userids
I am getting this error. Raising the issue. What is the fix?