Skip to content

Issue with the model.recommend() from the 'implicit' python library while I was using it to create an ALS based recommendation system !!! #742

@anirudhasahu92

Description

@anirudhasahu92
# Input
user_idx = 75
model.recommend(user_idx, sparse_item_user, N=10)
# output
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[164], line 2
      1 user_idx = 75
----> 2 model.recommend(user_idx, sparse_item_user, N=10)

File C:\anaconda3\Lib\site-packages\implicit\cpu\matrix_factorization_base.py:49, in MatrixFactorizationBase.recommend(self, userid, user_items, N, filter_already_liked_items, filter_items, recalculate_user, items)
     47     user_count = 1 if np.isscalar(userid) else len(userid)
     48     if user_items.shape[0] != user_count:
---> 49         raise ValueError("user_items must contain 1 row for every user in userids")
     51 user = self._user_factor(userid, user_items, recalculate_user)
     53 item_factors = self.item_factors

ValueError: user_items must contain 1 row for every user in userids

I am getting this error. Raising the issue. What is the fix?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions