Skip to content

Commit a19498b

Browse files
committed
add demografic
1 parent 56b8eb1 commit a19498b

File tree

2 files changed

+60
-2
lines changed

2 files changed

+60
-2
lines changed
Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
import pandas as pd
2+
3+
4+
class Demographic:
5+
def __init__(self, data, column_name):
6+
7+
self.data = data
8+
self.column_name = column_name
9+
self.demographic_data = None
10+
self.evaluateDemographics()
11+
12+
def evaluateDemographics(self):
13+
demographic_list = []
14+
for row in self.data:
15+
demographic = self.getDemographicFromRow(row)
16+
demographic_list.append(demographic)
17+
18+
self.demographic_data = pd.Series(demographic_list, name="Demographic Score")
19+
20+
def getDemographicFromRow(self, row):
21+
demographic = 0
22+
print(row)
23+
match row:
24+
case "A1":
25+
demographic = 1
26+
case "A2":
27+
demographic = 2
28+
case "A3":
29+
demographic = 3
30+
case "A4":
31+
demographic = 4
32+
case "A5":
33+
demographic = 5
34+
case "A6":
35+
demographic = 6
36+
case "A7":
37+
demographic = 7
38+
39+
if (demographic == 0):
40+
match row:
41+
case "AO01":
42+
demographic = 1
43+
case "AO02":
44+
demographic = 2
45+
case "AO03":
46+
demographic = 3
47+
case "AO04":
48+
demographic = 4
49+
case "AO05":
50+
demographic = 5
51+
case "AO06":
52+
demographic = 6
53+
case "AO07":
54+
demographic = 7
55+
56+
return demographic

bitbots_misc/bitbots_education/scripts/study_evaluation.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@
44
import sus_score as ss
55
import ios_score as io
66
import ueq_score as ue
7+
import demografic as dm
78
import log_evaluation as le
89
import scipy.stats as stats
910
import matplotlib.pyplot as plt
@@ -391,9 +392,10 @@ def calculate_significance(self, data1, data2, is_within_subject):
391392
evaluation.descriptive_data.to_csv("descriptive_data.csv")
392393
#evaluation.descriptive_log_data.to_csv("descriptive_log_data.csv")
393394

394-
395+
sex_of_audio_group = dm.Demographic(evaluation.quiz_data["Wie viel Kontak.. "], "Wie viel Kontak.. ")
396+
print(sex_of_audio_group.demographic_data.value_counts())
395397
#evaluation.log_eval.df.sort_values(by=["VP"], inplace=True)
396-
#evaluation.log_eval.df.to_csv("evaluation_output.csv")
398+
#evaluation.log_eval.df.to_csv("evaluation_output.c
397399

398400
# This code block is used to visualize the quiz scores using a box plot.
399401
#colors1 = ['lightskyblue', 'darkslateblue', 'lavender', 'mediumpurple' ] #,'plum'

0 commit comments

Comments
 (0)