Skip to content

NaN on experiment for nmist data. #3

@rica01

Description

@rica01

Hello.
I am trying to use your SET MLP implementation in a bunch of data from NMIST. I load the data with the following function I wrote:

def load_fashion_mnist_data(no_training_samples, no_testing_samples, filepath):

    data = np.load(filepath)

    x = data['Y_train']
    index_train = np.arange(data["X_train"].shape[0])
    np.random.shuffle(index_train)

    index_test = np.arange(data["X_test"].shape[0])
    np.random.shuffle(index_test)

    x_train = data["X_train"][index_train[0:no_training_samples], :]
    y_train = data["Y_train"][index_train[0:no_training_samples], :]
    x_test = data["X_test"][index_test[0:no_testing_samples], :]
    y_test = data["Y_test"][index_test[0:no_testing_samples], :]

    # normalize in 0..1
    x_train = x_train / 255.
    x_test = x_test / 255.

    return x_train.astype('float64'), y_train.astype('float64'), x_test.astype('float64'), y_test.astype('float64')

After a couple of epochs I come up with this error in the operation:
self.pdw[index] = self.momentum * self.pdw[index] - self.learning_rate * dw

Full traceback:

Traceback (most recent call last):
  File "C:\Users\rroman\projects\Py\old\set_mlp (2).py", line 585, in <module>
    metrics = set_mlp.fit(x_train, y_train, x_test, y_test, loss=CrossEntropy, epochs=no_training_epochs, batch_size=batch_size, learning_rate=learning_rate,
  File "C:\Users\rroman\projects\Py\old\set_mlp (2).py", line 309, in fit
    self._back_prop(z, a, masks,  y_[k:l])
  File "C:\Users\rroman\projects\Py\old\set_mlp (2).py", line 242, in _back_prop
    self._update_w_b(k, v[0], v[1])
  File "C:\Users\rroman\projects\Py\old\set_mlp (2).py", line 258, in _update_w_b
    self.pdw[index] = self.momentum * self.pdw[index] - self.learning_rate * dw
  File "C:\Users\rroman\AppData\Roaming\Python\Python39\site-packages\scipy\sparse\base.py", line 543, in __rmul__   
    return self.__mul__(other)
  File "C:\Users\rroman\AppData\Roaming\Python\Python39\site-packages\scipy\sparse\base.py", line 475, in __mul__    
    return self._mul_scalar(other)
  File "C:\Users\rroman\AppData\Roaming\Python\Python39\site-packages\scipy\sparse\data.py", line 124, in _mul_scalar
    return self._with_data(self.data * other)
FloatingPointError: underflow encountered in multiply

I am guessing that there's a number in one of the arrays that gets smaller and smaller and smaller. Is there somebody around that could give me a hand to prevent this from happening?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions