Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions deepmd/pt/model/descriptor/dpa1.py
Original file line number Diff line number Diff line change
Expand Up @@ -645,6 +645,10 @@ def enable_compression(
self.se_atten.enable_compression(
self.table.data, self.table_config, self.lower, self.upper
)

# Enable type embedding compression
self.se_atten.type_embedding_compression(self.type_embedding)

self.compress = True

def forward(
Expand Down
4 changes: 4 additions & 0 deletions deepmd/pt/model/descriptor/dpa2.py
Original file line number Diff line number Diff line change
Expand Up @@ -970,4 +970,8 @@ def enable_compression(
self.repinit.enable_compression(
self.table.data, self.table_config, self.lower, self.upper
)

# Enable type embedding compression for repinit (se_atten)
self.repinit.type_embedding_compression(self.type_embedding)

self.compress = True
119 changes: 89 additions & 30 deletions deepmd/pt/model/descriptor/se_atten.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,9 @@
MLPLayer,
NetworkCollection,
)
from deepmd.pt.model.network.network import (
TypeEmbedNet,
)
from deepmd.pt.utils import (
env,
)
Expand Down Expand Up @@ -272,7 +275,7 @@ def __init__(
self.filter_layers_strip = filter_layers_strip
self.stats = None

# add for compression
# For geometric compression
self.compress = False
self.is_sorted = False
self.compress_info = nn.ParameterList(
Expand All @@ -281,6 +284,10 @@ def __init__(
self.compress_data = nn.ParameterList(
[nn.Parameter(torch.zeros(0, dtype=self.prec, device=env.DEVICE))]
)
# For type embedding compression
self.register_buffer(
"type_embd_data", torch.zeros(0, dtype=self.prec, device=env.DEVICE)
)

def get_rcut(self) -> float:
"""Returns the cut-off radius."""
Expand Down Expand Up @@ -447,6 +454,56 @@ def enable_compression(
self.compress_data[0] = table_data[net].to(device=env.DEVICE, dtype=self.prec)
self.compress = True

def type_embedding_compression(self, type_embedding_net: TypeEmbedNet) -> None:
"""Enable type embedding compression for strip mode.

Precomputes embedding network outputs for all type combinations:
- One-side: (ntypes+1) combinations (neighbor types only)
- Two-side: (ntypes+1)² combinations (neighbor x center type pairs)

Parameters
----------
type_embedding_net : TypeEmbedNet
The type embedding network that provides get_full_embedding() method
"""
if self.tebd_input_mode != "strip":
raise RuntimeError("Type embedding compression only works in strip mode")
if self.filter_layers_strip is None:
raise RuntimeError(
"filter_layers_strip must be initialized for type embedding compression"
)

with torch.no_grad():
# Get full type embedding: (ntypes+1) x tebd_dim
full_embd = type_embedding_net.get_full_embedding(env.DEVICE)
nt, t_dim = full_embd.shape

if self.type_one_side:
# One-side: only neighbor types, much simpler!
# Precompute for all (ntypes+1) neighbor types
embd_tensor = self.filter_layers_strip.networks[0](full_embd).detach()
if hasattr(self, "type_embd_data"):
del self.type_embd_data
self.register_buffer("type_embd_data", embd_tensor)
else:
# Two-side: all (ntypes+1)² type pair combinations
# Create [neighbor, center] combinations
# for a fixed row i, all columns j have different neighbor types
embd_nei = full_embd.view(1, nt, t_dim).expand(nt, nt, t_dim)
# for a fixed row i, all columns j share the same center type i
embd_center = full_embd.view(nt, 1, t_dim).expand(nt, nt, t_dim)
two_side_embd = torch.cat([embd_nei, embd_center], dim=-1).reshape(
-1, t_dim * 2
)
# Precompute for all type pairs
# Index formula: idx = center_type * nt + neighbor_type
embd_tensor = self.filter_layers_strip.networks[0](
two_side_embd
).detach()
if hasattr(self, "type_embd_data"):
del self.type_embd_data
self.register_buffer("type_embd_data", embd_tensor)

def forward(
self,
nlist: torch.Tensor,
Expand Down Expand Up @@ -572,42 +629,44 @@ def forward(
nlist_index = nlist.reshape(nb, nloc * nnei)
# nf x (nl x nnei)
nei_type = torch.gather(extended_atype, dim=1, index=nlist_index)
# (nf x nl x nnei) x ng
nei_type_index = nei_type.view(-1, 1).expand(-1, ng).type(torch.long)
if self.type_one_side:
tt_full = self.filter_layers_strip.networks[0](type_embedding)
# (nf x nl x nnei) x ng
gg_t = torch.gather(tt_full, dim=0, index=nei_type_index)
if self.compress:
tt_full = self.type_embd_data
else:
# (ntypes+1, tebd_dim) -> (ntypes+1, ng)
tt_full = self.filter_layers_strip.networks[0](type_embedding)
# (nf*nl*nnei,) -> (nf*nl*nnei, ng)
gg_t = tt_full[nei_type.view(-1).type(torch.long)]
else:
idx_i = torch.tile(
atype.reshape(-1, 1) * ntypes_with_padding, [1, nnei]
).view(-1)
idx_j = nei_type.view(-1)
# (nf x nl x nnei)
idx = (idx_i + idx_j).to(torch.long)
if self.compress:
# ((ntypes+1)^2, ng)
tt_full = self.type_embd_data
else:
# ((ntypes+1)^2) * (ntypes+1)^2 * nt
type_embedding_nei = torch.tile(
type_embedding.view(1, ntypes_with_padding, nt),
[ntypes_with_padding, 1, 1],
)
# (ntypes+1)^2 * ((ntypes+1)^2) * nt
type_embedding_center = torch.tile(
type_embedding.view(ntypes_with_padding, 1, nt),
[1, ntypes_with_padding, 1],
)
# ((ntypes+1)^2 * (ntypes+1)^2) * (nt+nt)
two_side_type_embedding = torch.cat(
[type_embedding_nei, type_embedding_center], -1
).reshape(-1, nt * 2)
tt_full = self.filter_layers_strip.networks[0](
two_side_type_embedding
)
# (nf x nl x nnei) x ng
idx = (
(idx_i + idx_j)
.view(-1, 1)
.expand(-1, ng)
.type(torch.long)
.to(torch.long)
)
# (ntypes) * ntypes * nt
type_embedding_nei = torch.tile(
type_embedding.view(1, ntypes_with_padding, nt),
[ntypes_with_padding, 1, 1],
)
# ntypes * (ntypes) * nt
type_embedding_center = torch.tile(
type_embedding.view(ntypes_with_padding, 1, nt),
[1, ntypes_with_padding, 1],
)
# (ntypes * ntypes) * (nt+nt)
two_side_type_embedding = torch.cat(
[type_embedding_nei, type_embedding_center], -1
).reshape(-1, nt * 2)
tt_full = self.filter_layers_strip.networks[0](two_side_type_embedding)
# (nf x nl x nnei) x ng
gg_t = torch.gather(tt_full, dim=0, index=idx)
gg_t = tt_full[idx]
# (nf x nl) x nnei x ng
gg_t = gg_t.reshape(nfnl, nnei, ng)
if self.smooth:
Expand Down
2 changes: 2 additions & 0 deletions source/tests/pt/model/test_descriptor_dpa1.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,6 +249,7 @@ def test_descriptor_block(self) -> None:
# this is an old state dict, modify manually
state_dict["compress_info.0"] = des.compress_info[0]
state_dict["compress_data.0"] = des.compress_data[0]
state_dict["type_embd_data"] = des.type_embd_data
des.load_state_dict(state_dict)
coord = self.coord
atype = self.atype
Expand Down Expand Up @@ -377,5 +378,6 @@ def translate_se_atten_and_type_embd_dicts_to_dpa1(
target_dict[tk] = type_embd_dict[kk]
record[all_keys.index("se_atten.compress_data.0")] = True
record[all_keys.index("se_atten.compress_info.0")] = True
record[all_keys.index("se_atten.type_embd_data")] = True
assert all(record)
return target_dict
1 change: 1 addition & 0 deletions source/tests/pt/model/test_descriptor_dpa2.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,5 +196,6 @@ def translate_type_embd_dicts_to_dpa2(
target_dict[tk] = type_embd_dict[kk]
record[all_keys.index("repinit.compress_data.0")] = True
record[all_keys.index("repinit.compress_info.0")] = True
record[all_keys.index("repinit.type_embd_data")] = True
assert all(record)
return target_dict