|
1 | 1 | import torch |
2 | 2 |
|
| 3 | +def squash(predict , truth , **kwargs): |
| 4 | + '''To reshape tensors in order to fit Loss functions in pytorch |
| 5 | +
|
| 6 | + :param predict : Tensor, model output |
| 7 | + :param truth : Tensor, truth from dataset |
| 8 | + :param **kwargs : extra arguments |
| 9 | +
|
| 10 | + :return predict , truth: predict & truth after processing |
| 11 | + ''' |
| 12 | + return predict.view(-1 , predict.size()[-1]) , truth.view(-1,) |
| 13 | + |
| 14 | +def unpad(predict , truth , **kwargs): |
| 15 | + '''To process padded sequence output to get true loss |
| 16 | + Using pack_padded_sequence() method |
| 17 | + This method contains squash() |
| 18 | +
|
| 19 | + :param predict : Tensor, [batch_size , max_len , tag_size] |
| 20 | + :param truth : Tensor, [batch_size , max_len] |
| 21 | + :param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist |
| 22 | + kwargs["lens"] : list or LongTensor, [batch_size] |
| 23 | + the i-th element is true lengths of i-th sequence |
| 24 | + |
| 25 | + :return predict , truth: predict & truth after processing |
| 26 | + ''' |
| 27 | + if kwargs.get("lens") is None: |
| 28 | + return predict , truth |
| 29 | + lens = torch.LongTensor(kwargs["lens"]) |
| 30 | + lens , idx = torch.sort(lens , descending = True) |
| 31 | + predict = torch.nn.utils.rnn.pack_padded_sequence(predict[idx] , lens , batch_first = True).data |
| 32 | + truth = torch.nn.utils.rnn.pack_padded_sequence(truth[idx] , lens , batch_first = True).data |
| 33 | + return predict , truth |
| 34 | + |
| 35 | +def unpad_mask(predict , truth , **kwargs): |
| 36 | + '''To process padded sequence output to get true loss |
| 37 | + Using mask() method |
| 38 | + This method contains squash() |
| 39 | +
|
| 40 | + :param predict : Tensor, [batch_size , max_len , tag_size] |
| 41 | + :param truth : Tensor, [batch_size , max_len] |
| 42 | + :param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist |
| 43 | + kwargs["lens"] : list or LongTensor, [batch_size] |
| 44 | + the i-th element is true lengths of i-th sequence |
| 45 | + |
| 46 | + :return predict , truth: predict & truth after processing |
| 47 | + ''' |
| 48 | + if kwargs.get("lens") is None: |
| 49 | + return predict , truth |
| 50 | + mas = make_mask(kwargs["lens"] , truth.size()[1]) |
| 51 | + return mask(predict , truth , mask = mas) |
| 52 | + |
| 53 | +def mask(predict , truth , **kwargs): |
| 54 | + '''To select specific elements from Tensor |
| 55 | + This method contains squash() |
| 56 | +
|
| 57 | + :param predict : Tensor, [batch_size , max_len , tag_size] |
| 58 | + :param truth : Tensor, [batch_size , max_len] |
| 59 | + :param **kwargs : extra arguments, kwargs["mask"] is expected to be exsist |
| 60 | + kwargs["mask"] : ByteTensor, [batch_size , max_len] |
| 61 | + the mask Tensor , the position that is 1 will be selected |
| 62 | + |
| 63 | + :return predict , truth: predict & truth after processing |
| 64 | + ''' |
| 65 | + if kwargs.get("mask") is None: |
| 66 | + return predict , truth |
| 67 | + mask = kwargs["mask"] |
| 68 | + |
| 69 | + predict , truth = squash(predict , truth) |
| 70 | + mask = mask.view(-1,) |
| 71 | + |
| 72 | + predict = torch.masked_select(predict.permute(1,0) , mask).view(predict.size()[-1] , -1).permute(1,0) |
| 73 | + truth = torch.masked_select(truth , mask) |
| 74 | + |
| 75 | + return predict , truth |
| 76 | + |
| 77 | +def make_mask(lens , tar_len): |
| 78 | + '''to generate a mask that select [:lens[i]] for i-th element |
| 79 | + embezzle from fastNLP.models.sequence_modeling.seq_mask |
| 80 | +
|
| 81 | + :param lens : list or LongTensor, [batch_size] |
| 82 | + :param tar_len : int |
| 83 | + |
| 84 | + :return mask : ByteTensor |
| 85 | + ''' |
| 86 | + lens = torch.LongTensor(lens) |
| 87 | + mask = [torch.ge(lens, i + 1) for i in range(tar_len)] |
| 88 | + mask = torch.stack(mask, 1) |
| 89 | + return mask |
| 90 | + |
| 91 | +#map string to function. Just for more elegant using |
| 92 | +method_dict = { |
| 93 | + "squash" : squash, |
| 94 | + "unpad" : unpad, |
| 95 | + "unpad_mask" : unpad_mask, |
| 96 | + "mask" : mask, |
| 97 | +} |
| 98 | + |
| 99 | +loss_function_name = { |
| 100 | + "L1Loss".lower() : torch.nn.L1Loss, |
| 101 | + "BCELoss".lower() : torch.nn.BCELoss, |
| 102 | + "MSELoss".lower() : torch.nn.MSELoss, |
| 103 | + "NLLLoss".lower() : torch.nn.NLLLoss, |
| 104 | + "KLDivLoss".lower() : torch.nn.KLDivLoss, |
| 105 | + "NLLLoss2dLoss".lower() : torch.nn.NLLLoss2d, #every name should end with "loss" |
| 106 | + "SmoothL1Loss".lower() : torch.nn.SmoothL1Loss, |
| 107 | + "SoftMarginLoss".lower() : torch.nn.SoftMarginLoss, |
| 108 | + "PoissonNLLLoss".lower() : torch.nn.PoissonNLLLoss, |
| 109 | + "MultiMarginLoss".lower() : torch.nn.MultiMarginLoss, |
| 110 | + "CrossEntropyLoss".lower() : torch.nn.CrossEntropyLoss, |
| 111 | + "BCEWithLogitsLoss".lower() : torch.nn.BCEWithLogitsLoss, |
| 112 | + "MarginRankingLoss".lower() : torch.nn.MarginRankingLoss, |
| 113 | + "TripletMarginLoss".lower() : torch.nn.TripletMarginLoss, |
| 114 | + "HingeEmbeddingLoss".lower() : torch.nn.HingeEmbeddingLoss, |
| 115 | + "CosineEmbeddingLoss".lower() : torch.nn.CosineEmbeddingLoss, |
| 116 | + "MultiLabelMarginLoss".lower() : torch.nn.MultiLabelMarginLoss, |
| 117 | + "MultiLabelSoftMarginLoss".lower() : torch.nn.MultiLabelSoftMarginLoss, |
| 118 | +} |
3 | 119 |
|
4 | 120 | class Loss(object): |
5 | | - """Loss function of the algorithm, |
6 | | - either the wrapper of a loss function from framework, or a user-defined loss (need pytorch auto_grad support) |
7 | | -
|
8 | | - """ |
9 | | - |
10 | | - def __init__(self, args): |
11 | | - """ |
12 | | -
|
13 | | - :param args: None or str, the name of a loss function. |
14 | | -
|
15 | | - """ |
16 | | - if args is None: |
17 | | - # this is useful when Trainer.__init__ performs type check |
18 | | - self._loss = None |
19 | | - elif isinstance(args, str): |
20 | | - self._loss = self._borrow_from_pytorch(args) |
21 | | - else: |
22 | | - raise NotImplementedError |
23 | | - |
24 | | - def get(self): |
25 | | - """ |
26 | | -
|
27 | | - :return self._loss: the loss function |
28 | | - """ |
29 | | - return self._loss |
30 | | - |
31 | | - @staticmethod |
32 | | - def _borrow_from_pytorch(loss_name): |
33 | | - """Given a name of a loss function, return it from PyTorch. |
34 | | -
|
35 | | - :param loss_name: str, the name of a loss function |
36 | | -
|
37 | | - - cross_entropy: combines log softmax and nll loss in a single function. |
38 | | - - nll: negative log likelihood |
39 | | -
|
40 | | - :return loss: a PyTorch loss |
41 | | - """ |
42 | | - |
43 | | - class InnerCrossEntropy: |
44 | | - """A simple wrapper to guarantee input shapes.""" |
45 | | - |
46 | | - def __init__(self): |
47 | | - self.f = torch.nn.CrossEntropyLoss() |
48 | | - |
49 | | - def __call__(self, predict, truth): |
50 | | - truth = truth.view(-1, ) |
51 | | - return self.f(predict, truth) |
52 | | - |
53 | | - if loss_name == "cross_entropy": |
54 | | - return InnerCrossEntropy() |
55 | | - elif loss_name == 'nll': |
56 | | - return torch.nn.NLLLoss() |
57 | | - else: |
58 | | - raise NotImplementedError |
| 121 | + '''a Loss object is a callable object represents loss functions |
| 122 | + ''' |
| 123 | + |
| 124 | + def __init__(self , loss_name , pre_pro = [squash], **kwargs): |
| 125 | + ''' |
| 126 | +
|
| 127 | + :param loss_name: str or None , the name of loss function |
| 128 | + :param pre_pro : list of function or str, methods to reform parameters before calculating loss |
| 129 | + the strings will be auto translated to pre-defined functions |
| 130 | + :param **kwargs: kwargs for torch loss function |
| 131 | +
|
| 132 | + pre_pro funcsions should have three arguments: predict, truth, **arg |
| 133 | + predict and truth is the necessary parameters in loss function |
| 134 | + kwargs is the extra parameters passed-in when calling loss function |
| 135 | + pre_pro functions should return two objects, respectively predict and truth that after processed |
| 136 | +
|
| 137 | + ''' |
| 138 | + |
| 139 | + if loss_name is None: |
| 140 | + # this is useful when Trainer.__init__ performs type check |
| 141 | + self._loss = None |
| 142 | + else: |
| 143 | + if not isinstance(loss_name, str): |
| 144 | + raise NotImplementedError |
| 145 | + else: |
| 146 | + self._loss = self._get_loss(loss_name , **kwargs) |
| 147 | + |
| 148 | + self.pre_pro = [f if callable(f) else method_dict.get(f) for f in pre_pro] |
| 149 | + |
| 150 | + def add_pre_pro(self , func): |
| 151 | + '''add a pre_pro function |
| 152 | +
|
| 153 | + :param func: a function or str, methods to reform parameters before calculating loss |
| 154 | + the strings will be auto translated to pre-defined functions |
| 155 | + ''' |
| 156 | + if not callable(func): |
| 157 | + func = method_dict.get(func) |
| 158 | + if func is None: |
| 159 | + return |
| 160 | + self.pre_pro.append(func) |
| 161 | + |
| 162 | + @staticmethod |
| 163 | + def _get_loss(loss_name , **kwargs): |
| 164 | + '''Get loss function from torch |
| 165 | +
|
| 166 | + :param loss_name: str, the name of loss function |
| 167 | + :param **kwargs: kwargs for torch loss function |
| 168 | + :return: A callable loss function object |
| 169 | + ''' |
| 170 | + loss_name = loss_name.strip().lower() |
| 171 | + loss_name = "".join(loss_name.split("_")) |
| 172 | + |
| 173 | + if len(loss_name) < 4 or loss_name[-4 : ] != "loss": |
| 174 | + loss_name += "loss" |
| 175 | + return loss_function_name[loss_name](**kwargs) |
| 176 | + |
| 177 | + def get(self): |
| 178 | + '''This method exists just for make some existing codes run error-freely |
| 179 | + ''' |
| 180 | + return self |
| 181 | + |
| 182 | + def __call__(self , predict , truth , **kwargs): |
| 183 | + '''call a loss function |
| 184 | + predict and truth will be processed by pre_pro methods in order of addition |
| 185 | +
|
| 186 | + :param predict : Tensor, model output |
| 187 | + :param truth : Tensor, truth from dataset |
| 188 | + :param **kwargs : extra arguments, pass to pre_pro functions |
| 189 | + for example, if used unpad_mask() in pre_pro, there should be a kwarg named lens |
| 190 | + ''' |
| 191 | + for f in self.pre_pro: |
| 192 | + if f is None: |
| 193 | + continue |
| 194 | + predict , truth = f(predict , truth , **kwargs) |
| 195 | + |
| 196 | + return self._loss(predict , truth) |
0 commit comments