-
Notifications
You must be signed in to change notification settings - Fork 212
Open
Description
Describe the bug
error info
Steps: 0%|▏ | 64/20000 [20:09<102:30:56, 18.51s/it, total_loss=0.7242, generator_loss=0.6643, fake_score_loss=0.0599, step_time=18.71s, grad_norm=None, ema=✓, ema2=✗]Traceback (most recent call last):
File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/wan_distillation_pipeline.py", line 76, in <module>
main(args)
File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/wan_distillation_pipeline.py", line 64, in main
pipeline.train()
File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/distillation_pipeline.py", line 1524, in train
training_batch = self.train_one_step(training_batch)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank1]: Traceback (most recent call last):
[rank1]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/wan_distillation_pipeline.py", line 76, in <module>
[rank1]: main(args)
[rank1]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/wan_distillation_pipeline.py", line 64, in main
[rank1]: pipeline.train()
[rank1]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/distillation_pipeline.py", line 1524, in train
[rank1]: training_batch = self.train_one_step(training_batch)
[rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank1]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/distillation_pipeline.py", line 1003, in train_one_step
[rank1]: assert param.grad is not None and param.grad.abs().sum() > 0
[rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank1]: AssertionError
File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/distillation_pipeline.py", line 1003, in train_one_step
assert param.grad is not None and param.grad.abs().sum() > 0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError
[rank0]: Traceback (most recent call last):
[rank0]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/wan_distillation_pipeline.py", line 76, in <module>
[rank0]: main(args)
[rank0]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/wan_distillation_pipeline.py", line 64, in main
[rank0]: pipeline.train()
[rank0]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/distillation_pipeline.py", line 1524, in train
[rank0]: training_batch = self.train_one_step(training_batch)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/DATA/dgg/codes/temp/FastVideo/fastvideo/training/distillation_pipeline.py", line 1003, in train_one_step
[rank0]: assert param.grad is not None and param.grad.abs().sum() > 0
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: AssertionError
Reproduction
training scripts:
I run this scripts at commit 404314d: [Feature]Add video-to-video (V2V) pipeline (#829),
Apart from adding the following .sh file, no other content has been modified.
distill.sh
#!/bin/bash
#SBATCH --job-name=t2v
#SBATCH --partition=main
#SBATCH --nodes=8
#SBATCH --ntasks=8
#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:8
#SBATCH --cpus-per-task=128
#SBATCH --mem=1440G
#SBATCH --output=dmd_t2v_output/t2v_%j.out
#SBATCH --error=dmd_t2v_output/t2v_%j.err
#SBATCH --exclusive
set -e -x
# Environment Setup
# source ~/conda/miniconda/bin/activate
# conda activate your_env
# Basic Info
export WANDB_MODE=online
export WANDB_BASE_URL=http://localhost:8080
export WANDB_API_KEY=local-091fbd542428e2f9b998b07f97ef6ea46d2f74cf
export TOKENIZERS_PARALLELISM=false
export FASTVIDEO_ATTENTION_BACKEND=VIDEO_SPARSE_ATTN
export TRITON_CACHE_DIR=/tmp/triton_cache
export MASTER_ADDR=localhost
export MASTER_PORT=$(python -c 'import socket; s=socket.socket(); s.bind(("",0)); print(s.getsockname()[1]); s.close()')
export NODE_RANK=0
export CUDA_VISIBLE_DEVICES=6,7
# Configs
NUM_GPUS=2
MODEL_PATH="/DATA/dgg/models/Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
REAL_SCORE_MODEL_PATH=$MODEL_PATH
FAKE_SCORE_MODEL_PATH=$MODEL_PATH
DATA_DIR=/DATA/dgg/models/FastVideo/Wan-Syn_77x448x832_600k/train
VALIDATION_DATASET_FILE=/DATA/dgg/models/FastVideo/Wan-Syn_77x448x832_600k/val/Part_1/latents_chunk_0000.parquet
INTERVAL=1
PREFIX=$(date +"%m%d_%H%M")
WANDB_RUN_NAME="${PREFIX}_vsa_1step_${NUM_GPUS}gpu_interval${INTERVAL}"
OUTPUT_DIR="checkpoints/distill_wan_t2v_to_t2v/${WANDB_RUN_NAME}"
# export CUDA_VISIBLE_DEVICES=4,5
# IP=[MASTER NODE IP]
# Training arguments
training_args=(
--tracker_project_name wan_t2v_distill_dmd_VSA
--wandb_run_name ${WANDB_RUN_NAME}
--output_dir "$OUTPUT_DIR"
--max_train_steps 20000
--train_batch_size 1
--train_sp_batch_size 1
--gradient_accumulation_steps 1
--num_latent_t 20
--num_height 448
--num_width 832
--num_frames 77
--enable_gradient_checkpointing_type "full"
--mode distillation
)
# Parallel arguments
parallel_args=(
--num_gpus $NUM_GPUS
--sp_size 1
--tp_size 1
--hsdp_replicate_dim $NUM_GPUS
--hsdp_shard_dim 1
)
# Model arguments
model_args=(
--model_path $MODEL_PATH
--pretrained_model_name_or_path $MODEL_PATH
--real_score_model_path $REAL_SCORE_MODEL_PATH
--fake_score_model_path $FAKE_SCORE_MODEL_PATH
)
# Dataset arguments
dataset_args=(
--data_path "$DATA_DIR"
--dataloader_num_workers 4
)
# Validation arguments
validation_args=(
--log_validation
--validation_dataset_file "$VALIDATION_DATASET_FILE"
--validation_steps 500
--validation_sampling_steps "1"
--validation_guidance_scale "6.0" # not used for dmd inference
)
# Optimizer arguments
optimizer_args=(
--learning_rate 2e-6
--mixed_precision "bf16"
--training_state_checkpointing_steps 1000
--weight_only_checkpointing_steps 1000
--weight_decay 0.01
--max_grad_norm 1.0
)
# Miscellaneous arguments
miscellaneous_args=(
--inference_mode False
--checkpoints_total_limit 3
--training_cfg_rate 0.0
--dit_precision "fp32"
--ema_start_step 0
--flow_shift 8
--seed 1000
)
# DMD arguments
dmd_args=(
--dmd_denoising_steps '1000'
--min_timestep_ratio 0.02
--max_timestep_ratio 0.98
--generator_update_interval $INTERVAL
--real_score_guidance_scale 3.5
--VSA_sparsity 0.8
)
v2lv_args=(
# --log_visualization # disable if oom
# --task_flag ""
# --token_concat_mode "sequential"
# --use_flow_matching_loss
# --flow_matching_weight 1.0
)
torchrun \
--standalone \
--nnodes=1 \
--nproc_per_node=$NUM_GPUS \
--master_port=$MASTER_PORT \
fastvideo/training/wan_distillation_pipeline.py \
"${parallel_args[@]}" \
"${model_args[@]}" \
"${dataset_args[@]}" \
"${training_args[@]}" \
"${optimizer_args[@]}" \
"${validation_args[@]}" \
"${miscellaneous_args[@]}" \
"${dmd_args[@]}" \
"${v2lv_args[@]}"
Environment
envs
➜ python collect_env.py
INFO 10-30 11:56:59 [__init__.py:109] ROCm platform is unavailable: No module named 'amdsmi'
WARNING 10-30 11:56:59 [logger.py:122] By default, logger.info(..) will only log from the local main process. Set logger.info(..., is_local_main_process=False) to log from all processes.
INFO 10-30 11:56:59 [__init__.py:47] CUDA is available
Collecting environment information...
PyTorch version: 2.7.1+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (conda-forge gcc 12.4.0-2) 12.4.0
Clang version: Could not collect
CMake version: version 3.10.2
Libc version: glibc-2.31
Python version: 3.12.12 | packaged by Anaconda, Inc. | (main, Oct 14 2025, 16:16:33) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.15.0-187-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.6.55
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe
GPU 4: NVIDIA A100 80GB PCIe
GPU 5: NVIDIA A100 80GB PCIe
GPU 6: NVIDIA A100 80GB PCIe
GPU 7: NVIDIA A100 80GB PCIe
Nvidia driver version: 535.54.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 72
On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
Stepping: 7
CPU MHz: 2844.296
CPU max MHz: 2601.0000
CPU min MHz: 1000.0000
BogoMIPS: 5200.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 25344K
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] accelerate==1.0.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] peft==0.17.1
[pip3] torch==2.7.1
[pip3] torchcodec==0.5
[pip3] torchdata==0.11.0
[pip3] torchvision==0.22.1
[pip3] transformers==4.57.1
[pip3] triton==3.3.1
[conda] accelerate 1.0.1 pypi_0 pypi
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-ml-py 13.580.82 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvshmem-cu12 3.3.20 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] peft 0.17.1 pypi_0 pypi
[conda] torch 2.7.1 pypi_0 pypi
[conda] torchcodec 0.5 pypi_0 pypi
[conda] torchdata 0.11.0 pypi_0 pypi
[conda] torchvision 0.22.1 pypi_0 pypi
[conda] transformers 4.57.1 pypi_0 pypi
[conda] triton 3.3.1 pypi_0 pypi
FastVideo Version:
FastVideo Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PIX PIX NODE NODE NODE NODE PIX PIX 0-17,36-53 0 N/A
GPU1 PIX X PIX PIX NODE NODE NODE NODE PIX PIX 0-17,36-53 0 N/A
GPU2 PIX PIX X PIX NODE NODE NODE NODE PIX PIX 0-17,36-53 0 N/A
GPU3 PIX PIX PIX X NODE NODE NODE NODE PIX PIX 0-17,36-53 0 N/A
GPU4 NODE NODE NODE NODE X PIX PIX PIX NODE NODE 0-17,36-53 0 N/A
GPU5 NODE NODE NODE NODE PIX X PIX PIX NODE NODE 0-17,36-53 0 N/A
GPU6 NODE NODE NODE NODE PIX PIX X PIX NODE NODE 0-17,36-53 0 N/A
GPU7 NODE NODE NODE NODE PIX PIX PIX X NODE NODE 0-17,36-53 0 N/A
NIC0 PIX PIX PIX PIX NODE NODE NODE NODE X PIX
NIC1 PIX PIX PIX PIX NODE NODE NODE NODE PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
LD_LIBRARY_PATH=:/usr/local/cuda-12.4/lib64
CUDA_HOME=/usr/local/cuda-12.4
CUDA_MODULE_LOADING=LAZY
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_gpu
other info
➜ python
Python 3.12.12 | packaged by Anaconda, Inc. | (main, Oct 14 2025, 16:16:33) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from fastvideo.utils import is_vsa_available
INFO 10-30 12:47:12 [__init__.py:109] ROCm platform is unavailable: No module named 'amdsmi'
WARNING 10-30 12:47:12 [logger.py:122] By default, logger.info(..) will only log from the local main process. Set logger.info(..., is_local_main_process=False) to log from all processes.
INFO 10-30 12:47:12 [__init__.py:47] CUDA is available
>>> is_vsa_available()
True
>>>
Metadata
Metadata
Assignees
Labels
No labels