Skip to content

prediction help? #3

@antithing

Description

@antithing

Hi, and thank you for making this code available. I have a dataset where measurements were taken at 1hz, and I am trying to use your filter to add predicted sample in between the measurements, so that my output is at 10hz.
If you have a moment, could you point me at the best settings to use for this? I have it working ok when the velocity is linear, but the motion is not consistent, and on direction changes, the output looks bad... .I have:

int main(int argc, char* argv[]) {

  int n = 3; // Number of states
  int m = 1; // Number of measurements

  double dt = 1.0/30; // Time step

  Eigen::MatrixXd A(n, n); // System dynamics matrix
  Eigen::MatrixXd C(m, n); // Output matrix
  Eigen::MatrixXd Q(n, n); // Process noise covariance
  Eigen::MatrixXd R(m, m); // Measurement noise covariance
  Eigen::MatrixXd P(n, n); // Estimate error covariance

  // Discrete LTI projectile motion, measuring position only
  A << 1, dt, 0, 0, 1, dt, 0, 0, 1;
  C << 1, 0, 0;

  // Reasonable covariance matrices
  Q << .05, .05, .0, .05, .05, .0, .0, .0, .0;
  R << 3; //5
  P << 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01;
  // Construct the filter
  KalmanFilter kf(dt,A, C, Q, R, P);

  // List of noisy position measurements (y)
  std::vector<double> measurements = {
     10,11,20,13,14,15,16,17,18,22,20,21,19,18,17,16,17.5,19,21,22,23,25,26,25,24,21,20,18,16
  };

  // Best guess of initial states
  Eigen::VectorXd x0(n);
  x0 << measurements[0], 0, 0;
  kf.init(dt,x0);

  // Feed measurements into filter, output estimated states
  double t = 0;
  Eigen::VectorXd y(m);

  std::ofstream savefile;
  savefile.open("dataHigh.csv");
  std::ofstream savefile2;
  savefile2.open("dataLow.csv");


  for(int i = 0; i < measurements.size(); i++) {

	  y << measurements[i]; // REAL MEASUREMENT

	  kf.update(y);

	  for (int ji = 0; ji < 10; ji++)  //TEN PREDICTED SAMPLES BETWEEN
	  {
		  t += dt; 
		 kf.update(y);
		  std::cout << "t = " << t << ", " << "y[" << i << "] = " << y.x()
			  << ", x_hat[" << i << "] = " << kf.state().x() << std::endl;

		  //save
		  savefile << kf.state().x();
		  savefile << "\n";
		  savefile2 << measurements[i];
		  savefile2 << "\n";

		  y << kf.state().transpose(); //COPY SAMPLE TO Y
		 
	  }
  }

  return 0;
}

thank you again!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions