|
| 1 | +from __future__ import annotations |
| 2 | +from typing import Iterable, TYPE_CHECKING |
| 3 | +import os |
| 4 | +import math |
| 5 | +from tqdm import tqdm |
| 6 | + |
| 7 | +import torch |
| 8 | +import accelerate |
| 9 | +import diffusers |
| 10 | + |
| 11 | +from torch.utils.data import DataLoader, Dataset |
| 12 | +from torch.nn import Parameter |
| 13 | +from accelerate.logging import get_logger |
| 14 | +from diffusers.optimization import get_scheduler |
| 15 | + |
| 16 | +from mugen.utils.trainer_utils import set_seed, get_last_checkpoint, prune_checkpoints |
| 17 | + |
| 18 | +if TYPE_CHECKING: |
| 19 | + from mugen import TrainingArguments |
| 20 | + from mugen.trainingmodules import TrainingModule |
| 21 | + from torch.optim import Optimizer |
| 22 | + from torch.optim.lr_scheduler import _LRScheduler as LRScheduler |
| 23 | + |
| 24 | + |
| 25 | +logger = get_logger(__name__, log_level="INFO") |
| 26 | + |
| 27 | + |
| 28 | +class Trainer: |
| 29 | + def __init__( |
| 30 | + self, |
| 31 | + project_name: str, |
| 32 | + training_module: TrainingModule, |
| 33 | + training_args: TrainingArguments, |
| 34 | + train_dataset: Dataset, |
| 35 | + eval_dataset: Dataset, |
| 36 | + ): |
| 37 | + self.training_args = training_args |
| 38 | + self.global_step = 0 |
| 39 | + |
| 40 | + set_seed(self.training_args.seed) |
| 41 | + |
| 42 | + self.accelerator = accelerate.Accelerator( |
| 43 | + gradient_accumulation_steps=training_args.gradient_accumulation_steps, |
| 44 | + mixed_precision=training_args.mixed_precision, |
| 45 | + log_with=training_args.logger, |
| 46 | + cpu=training_args.use_cpu, |
| 47 | + deepspeed_plugin=training_args.get_deepspeed_plugin(), |
| 48 | + fsdp_plugin=training_args.get_fsdp_plugin(), |
| 49 | + project_config=training_args.get_project_configuration(), |
| 50 | + ) |
| 51 | + |
| 52 | + if self.accelerator.is_local_main_process: |
| 53 | + diffusers.utils.logging.set_verbosity_info() |
| 54 | + else: |
| 55 | + diffusers.utils.logging.set_verbosity_error() |
| 56 | + |
| 57 | + self.accelerator.register_save_state_pre_hook(training_module.save_model_hook) |
| 58 | + self.accelerator.register_load_state_pre_hook(training_module.load_model_hook) |
| 59 | + |
| 60 | + self.training_module = training_module |
| 61 | + self.training_module.register_trainer(self) |
| 62 | + |
| 63 | + self.train_dataloader = self.get_train_dataloader(train_dataset) |
| 64 | + self.val_dataloader = self.get_eval_dataloader(eval_dataset) |
| 65 | + |
| 66 | + self.optimizers = [ |
| 67 | + self.create_optimizer(params) |
| 68 | + for params in self.training_module.get_optim_params() |
| 69 | + ] |
| 70 | + |
| 71 | + num_training_steps = len(self.train_dataloader) * self.training_args.num_epochs |
| 72 | + self.schedulers = [ |
| 73 | + self.create_scheduler( |
| 74 | + opt, |
| 75 | + num_training_steps=num_training_steps, |
| 76 | + num_warmup_steps=self.training_args.get_warmup_steps( |
| 77 | + num_training_steps |
| 78 | + ), |
| 79 | + ) |
| 80 | + for opt in self.optimizers |
| 81 | + ] |
| 82 | + |
| 83 | + # Prepare with Accelerator |
| 84 | + self.training_module = self.accelerator.prepare_model(self.training_module) |
| 85 | + for i in range(len(self.optimizers)): |
| 86 | + self.optimizers[i] = self.accelerator.prepare_optimizer(self.optimizers[i]) |
| 87 | + for i in range(len(self.schedulers)): |
| 88 | + self.schedulers[i] = self.accelerator.prepare_scheduler(self.schedulers[i]) |
| 89 | + self.train_dataloader = self.accelerator.prepare_data_loader( |
| 90 | + self.train_dataloader |
| 91 | + ) |
| 92 | + self.val_dataloader = self.accelerator.prepare_data_loader(self.val_dataloader) |
| 93 | + |
| 94 | + if self.accelerator.is_main_process: |
| 95 | + self.accelerator.init_trackers( |
| 96 | + project_name, |
| 97 | + init_kwargs={ |
| 98 | + self.training_args.logger: self.training_args.tracker_init_kwargs |
| 99 | + }, |
| 100 | + ) |
| 101 | + |
| 102 | + def start(self): |
| 103 | + total_batch_size = ( |
| 104 | + self.training_args.train_batch_size |
| 105 | + * self.accelerator.num_processes |
| 106 | + * self.training_args.gradient_accumulation_steps |
| 107 | + ) |
| 108 | + num_update_steps_per_epoch = math.ceil( |
| 109 | + len(self.train_dataloader) / self.training_args.gradient_accumulation_steps |
| 110 | + ) |
| 111 | + max_train_steps = self.training_args.num_epochs * num_update_steps_per_epoch |
| 112 | + |
| 113 | + logger.info("***** Running training *****") |
| 114 | + logger.info(f" Num examples = {len(self.train_dataloader.dataset)}") |
| 115 | + logger.info(f" Num Epochs = {self.training_args.num_epochs}") |
| 116 | + logger.info( |
| 117 | + f" Instantaneous batch size per device = {self.training_args.train_batch_size}" |
| 118 | + ) |
| 119 | + logger.info( |
| 120 | + f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" |
| 121 | + ) |
| 122 | + logger.info( |
| 123 | + f" Gradient Accumulation steps = {self.training_args.gradient_accumulation_steps}" |
| 124 | + ) |
| 125 | + logger.info(f" Total optimization steps = {max_train_steps}") |
| 126 | + |
| 127 | + first_epoch = 0 |
| 128 | + |
| 129 | + if self.training_args.resume_from_checkpoint: |
| 130 | + if self.training_args.resume_from_checkpoint == "latest": |
| 131 | + path = get_last_checkpoint(self.training_args.output_dir) |
| 132 | + else: |
| 133 | + path = self.training_args.resume_from_checkpoint |
| 134 | + |
| 135 | + if path is None or not os.path.exists(path): |
| 136 | + self.accelerator.print( |
| 137 | + f"Checkpoint not found at {path}. Starting a new training run." |
| 138 | + ) |
| 139 | + self.training_args.resume_from_checkpoint = None |
| 140 | + else: |
| 141 | + self.accelerator.print(f"Loading checkpoint from {path}") |
| 142 | + self.accelerator.load_state(path) |
| 143 | + |
| 144 | + self.global_step = int(os.path.basename(path).split("-")[-1]) |
| 145 | + |
| 146 | + resume_global_step = ( |
| 147 | + self.global_step * self.training_args.gradient_accumulation_steps |
| 148 | + ) |
| 149 | + first_epoch = self.global_step // num_update_steps_per_epoch |
| 150 | + resume_step = resume_global_step % ( |
| 151 | + num_update_steps_per_epoch |
| 152 | + * self.training_args.gradient_accumulation_steps |
| 153 | + ) |
| 154 | + |
| 155 | + # Train! |
| 156 | + self.training_module.on_start() |
| 157 | + for epoch in range(first_epoch, self.training_args.num_epochs): |
| 158 | + with tqdm( |
| 159 | + total=num_update_steps_per_epoch, |
| 160 | + disable=not self.accelerator.is_local_main_process, |
| 161 | + ) as progress_bar: |
| 162 | + self.training_module.register_progress_bar(progress_bar) |
| 163 | + progress_bar.set_description(f"Epoch {epoch}") |
| 164 | + |
| 165 | + self.training_module.train() |
| 166 | + self.training_module.on_train_epoch_start() |
| 167 | + for step, batch in enumerate(self.train_dataloader): |
| 168 | + # Skip steps until we reach the resumed step |
| 169 | + if ( |
| 170 | + self.training_args.resume_from_checkpoint |
| 171 | + and epoch == first_epoch |
| 172 | + and step < resume_step |
| 173 | + ): |
| 174 | + if step % self.training_args.gradient_accumulation_steps == 0: |
| 175 | + progress_bar.update(1) |
| 176 | + continue |
| 177 | + |
| 178 | + self.training_module.on_train_batch_start() |
| 179 | + |
| 180 | + with self.accelerator.accumulate(self.training_module): |
| 181 | + self.training_module.training_step(batch, self.optimizers, step) |
| 182 | + for scheduler in self.schedulers: |
| 183 | + scheduler.step() |
| 184 | + |
| 185 | + if self.accelerator.sync_gradients: |
| 186 | + self.training_module.on_train_batch_end() |
| 187 | + progress_bar.update(1) |
| 188 | + |
| 189 | + self.global_step += 1 |
| 190 | + |
| 191 | + if self.global_step % self.training_args.save_steps == 0: |
| 192 | + if self.accelerator.is_main_process: |
| 193 | + prune_checkpoints(self.training_args.output_dir, self.training_args.save_total_limit - 1) |
| 194 | + save_path = os.path.join( |
| 195 | + self.training_args.output_dir, |
| 196 | + f"checkpoint-{self.global_step}", |
| 197 | + ) |
| 198 | + self.accelerator.save_state(save_path) |
| 199 | + logger.info(f"Saved state to {save_path}") |
| 200 | + |
| 201 | + if ( |
| 202 | + self.global_step |
| 203 | + % self.training_args.get_eval_steps(max_train_steps) |
| 204 | + == 0 |
| 205 | + ): |
| 206 | + self._eval_loop() |
| 207 | + |
| 208 | + if self.accelerator.is_main_process: |
| 209 | + self.training_module.on_train_epoch_end() |
| 210 | + |
| 211 | + self.accelerator.wait_for_everyone() |
| 212 | + self.accelerator.end_training() |
| 213 | + |
| 214 | + def _eval_loop(self): |
| 215 | + with tqdm( |
| 216 | + total=len(self.val_dataloader), |
| 217 | + disable=not self.accelerator.is_local_main_process, |
| 218 | + ) as progress_bar: |
| 219 | + progress_bar.set_description(f"Evaluating...") |
| 220 | + |
| 221 | + self.training_module.eval() |
| 222 | + with torch.inference_mode(): |
| 223 | + self.training_module.on_validation_epoch_start() |
| 224 | + for step, batch in enumerate(self.val_dataloader): |
| 225 | + self.training_module.validation_step(batch, step) |
| 226 | + progress_bar.update(1) |
| 227 | + |
| 228 | + if self.accelerator.is_main_process: |
| 229 | + self.training_module.on_validation_epoch_end() |
| 230 | + |
| 231 | + def evaluate(self): |
| 232 | + self._eval_loop() |
| 233 | + |
| 234 | + def get_tracker(self, unwrap: bool = False): |
| 235 | + return self.accelerator.get_tracker(self.training_args.logger, unwrap) |
| 236 | + |
| 237 | + def create_optimizer(self, parameters: Iterable[Parameter]): |
| 238 | + return torch.optim.AdamW( |
| 239 | + parameters, |
| 240 | + lr=self.training_args.learning_rate, |
| 241 | + betas=(self.training_args.adam_beta1, self.training_args.adam_beta2), |
| 242 | + eps=self.training_args.adam_epsilon, |
| 243 | + weight_decay=self.training_args.adam_weight_decay, |
| 244 | + ) |
| 245 | + |
| 246 | + def create_scheduler( |
| 247 | + self, optimizer: Optimizer, num_training_steps: int, num_warmup_steps: int |
| 248 | + ) -> LRScheduler: |
| 249 | + return get_scheduler( |
| 250 | + self.training_args.lr_scheduler_type, |
| 251 | + optimizer, |
| 252 | + num_warmup_steps=num_warmup_steps, |
| 253 | + num_training_steps=num_training_steps, |
| 254 | + ) |
| 255 | + |
| 256 | + def get_train_dataloader(self, dataset: Dataset): |
| 257 | + if self.training_args.data_seed is not None: |
| 258 | + generator = torch.Generator().seed(self.training_args.data_seed) |
| 259 | + else: |
| 260 | + generator = None |
| 261 | + |
| 262 | + return DataLoader( |
| 263 | + dataset, |
| 264 | + batch_size=self.training_args.train_batch_size, |
| 265 | + num_workers=self.training_args.data_loader_num_workers, |
| 266 | + generator=generator, |
| 267 | + shuffle=True, |
| 268 | + ) |
| 269 | + |
| 270 | + def get_eval_dataloader(self, dataset: Dataset): |
| 271 | + return DataLoader( |
| 272 | + dataset, |
| 273 | + batch_size=self.training_args.eval_batch_size, |
| 274 | + num_workers=self.training_args.data_loader_num_workers, |
| 275 | + shuffle=False, |
| 276 | + ) |
0 commit comments