Skip to content

Commit 778b3ff

Browse files
authored
Merge pull request #389 from johko/fix-repo-paths
Fix Repo Paths
2 parents 26f6d4c + 0fe0c39 commit 778b3ff

File tree

7 files changed

+44
-44
lines changed

7 files changed

+44
-44
lines changed

CONTRIBUTING.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Hey 👋, great that you want to contribute to the Community Computer Vision Cou
55
### Adding content to the course
66
*Important Note: If you’ve never contributed to open-source projects on GitHub, kindly read [this document](https://www.notion.so/19411c29298644df8e9656af45a7686d?pvs=25) which shows to do so with an example for the skops repository.*
77

8-
1. First go to the [discussion section](https://github.com/johko/computer-vision-course/discussions/).
8+
1. First go to the [discussion section](https://github.com/huggingface/computer-vision-course/discussions/).
99
2. Here you find a section for each unit of the course. Go to the unit you want to contribute to. Open a new discussion and describe what you want to add.
1010
3. Wait for an approval from the repository maintainers or change requests
1111
4. When your suggestions is approved, follow these steps:
@@ -15,7 +15,7 @@ Hey 👋, great that you want to contribute to the Community Computer Vision Cou
1515

1616

1717
### Typos/Bug fixes
18-
1. Open an [Issue](https://github.com/johko/computer-vision-course/issues) describing which content you want to add, change or fix
18+
1. Open an [Issue](https://github.com/huggingface/computer-vision-course/issues) describing which content you want to add, change or fix
1919
2. Wait for an approval from the repository maintainers
2020
3. Follow the steps below to create a PR
2121

@@ -24,7 +24,7 @@ Hey 👋, great that you want to contribute to the Community Computer Vision Cou
2424
1. Fork the repository
2525
2. Create a new branch for your changes
2626
3. Make your changes
27-
4. Create a pull request to the [stage](https://github.com/johko/computer-vision-course/tree/stage) branch of the main repository
27+
4. Create a pull request to the [stage](https://github.com/huggingface/computer-vision-course/tree/stage) branch of the main repository
2828
5. Wait for the maintainers to approve your PR
2929
6. Celebrate your contribution 🥳🎉
3030

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
![Course](https://github.com/johko/computer-vision-course/assets/53175384/58e39903-5a3a-4d48-8f3c-5811f31b93b5)
1+
![Course](https://github.com/huggingface/computer-vision-course/assets/53175384/58e39903-5a3a-4d48-8f3c-5811f31b93b5)
22

33
# Community-led Computer Vision Community Course 🤗
44

@@ -39,7 +39,7 @@ Join [the Hugging Face discord](https://discord.gg/hugging-face-8795489624644936
3939

4040
### Contributors
4141

42-
<a href="https://github.com/johko/computer-vision-course/graphs/contributors">
42+
<a href="https://github.com/huggingface/computer-vision-course/graphs/contributors">
4343
<img src="https://contrib.rocks/image?repo=johko/computer-vision-course" />
4444
</a>
4545

chapters/en/unit0/welcome/welcome.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,7 @@ The course is organized into multiple units, covering the fundamentals and delvi
9090

9191
## Meet our team
9292

93-
This course is made by the Hugging Face Community with love 💜! Join us by adding your contribution [on GitHub](https://github.com/johko/computer-vision-course).
93+
This course is made by the Hugging Face Community with love 💜! Join us by adding your contribution [on GitHub](https://github.com/huggingface/computer-vision-course).
9494
Our goal was to create a computer vision course that is beginner-friendly and that could act as a resource for others. Around 60+ people from all over the world joined forces to make this project happen. Here we give them credit:
9595

9696
**Unit 1 - Fundamentals of Computer Vision**

chapters/en/unit3/vision-transformers/knowledge-distillation.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ The distillation loss is formulated as:
2626

2727
The KL loss refers to the [Kullback-Leibler Divergence](https://en.wikipedia.org/wiki/Kullback–Leibler_divergence) between the teacher and the student's output distributions. The overall loss for the student model is then formulated as the sum of this distillation loss with the standard cross-entropy loss over the ground-truth labels.
2828

29-
To see this loss function implemented in Python and a fully worked out example in Python, let's check out the [notebook for this section](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%203%20-%20Vision%20Transformers/KnowledgeDistillation.ipynb).
29+
To see this loss function implemented in Python and a fully worked out example in Python, let's check out the [notebook for this section](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%203%20-%20Vision%20Transformers/KnowledgeDistillation.ipynb).
3030

3131
<a target="_blank" href="https://colab.research.google.com/github/johko/computer-vision-course/blob/main/notebooks/Unit%203%20-%20Vision%20Transformers/KnowledgeDistillation.ipynb">
3232
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>

chapters/en/unit9/tools_and_frameworks.mdx

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ pip install -U tensorflow-model-optimization
1818

1919
### Hands-on guide
2020

21-
For a hands-on guide on how to use the Tensorflow Model Optimization Toolkit, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/tmo.ipynb)
21+
For a hands-on guide on how to use the Tensorflow Model Optimization Toolkit, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/tmo.ipynb)
2222
## PyTorch Quantization
2323

2424
### Overview
@@ -40,7 +40,7 @@ import torch.quantization
4040
```
4141
## Hands-on guide
4242

43-
For a hands-on guide on how to use the Pytorch Quantization, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/torch.ipynb)
43+
For a hands-on guide on how to use the Pytorch Quantization, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/torch.ipynb)
4444

4545
## ONNX Runtime
4646

@@ -72,7 +72,7 @@ pip install onnxruntime-gpu
7272

7373
### Hands-on guide
7474

75-
For a hands-on guide on how to use the ONNX Runtime, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/onnx.ipynb)
75+
For a hands-on guide on how to use the ONNX Runtime, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/onnx.ipynb)
7676

7777
## TensorRT
7878

@@ -92,7 +92,7 @@ for other installation methods, see [here](https://docs.nvidia.com/deeplearning/
9292

9393
### Hands-on guide
9494

95-
For a hands-on guide on how to use the TensorRT, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/tensorrt.ipynb)
95+
For a hands-on guide on how to use the TensorRT, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/tensorrt.ipynb)
9696

9797
## OpenVINO
9898

@@ -116,7 +116,7 @@ For other installation methods, see [here](https://docs.openvino.ai/2023.2/openv
116116

117117
### Hands-on guide
118118

119-
For a hands-on guide on how to use the OpenVINO, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/openvino.ipynb)
119+
For a hands-on guide on how to use the OpenVINO, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/openvino.ipynb)
120120

121121
## Optimum
122122

@@ -146,7 +146,7 @@ For installation of accelerator-specific features, see [here](https://huggingfac
146146

147147
### Hands-on guide
148148

149-
For a hands-on guide on how to use Optimum for quantization, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/optimum.ipynb)
149+
For a hands-on guide on how to use Optimum for quantization, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/optimum.ipynb)
150150

151151
## EdgeTPU
152152

@@ -160,6 +160,6 @@ The benefits of using EdgeTPU includes:
160160

161161
For more details on EdgeTPU, see [here](https://cloud.google.com/edge-tpu)
162162

163-
For guide on how to setup and use EdgeTPU, refer this [notebook](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/edge_tpu.ipynb)
163+
For guide on how to setup and use EdgeTPU, refer this [notebook](https://github.com/huggingface/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/edge_tpu.ipynb)
164164

165165

0 commit comments

Comments
 (0)