Skip to content

Commit 25f7574

Browse files
authored
Merge branch 'main' into fix-wan_vace_prompt_embeds
2 parents a9ac96e + 08c2902 commit 25f7574

28 files changed

+1437
-1666
lines changed

docs/source/en/_toctree.yml

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -23,11 +23,7 @@
2323
- local: using-diffusers/reusing_seeds
2424
title: Reproducibility
2525
- local: using-diffusers/schedulers
26-
title: Load schedulers and models
27-
- local: using-diffusers/models
28-
title: Models
29-
- local: using-diffusers/scheduler_features
30-
title: Scheduler features
26+
title: Schedulers
3127
- local: using-diffusers/other-formats
3228
title: Model files and layouts
3329
- local: using-diffusers/push_to_hub
@@ -68,6 +64,8 @@
6864
title: Accelerate inference
6965
- local: optimization/cache
7066
title: Caching
67+
- local: optimization/attention_backends
68+
title: Attention backends
7169
- local: optimization/memory
7270
title: Reduce memory usage
7371
- local: optimization/speed-memory-optims
Lines changed: 106 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,106 @@
1+
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
2+
3+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4+
the License. You may obtain a copy of the License at
5+
6+
http://www.apache.org/licenses/LICENSE-2.0
7+
8+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9+
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10+
specific language governing permissions and limitations under the License. -->
11+
12+
# Attention backends
13+
14+
> [!TIP]
15+
> The attention dispatcher is an experimental feature. Please open an issue if you have any feedback or encounter any problems.
16+
17+
Diffusers provides several optimized attention algorithms that are more memory and computationally efficient through it's *attention dispatcher*. The dispatcher acts as a router for managing and switching between different attention implementations and provides a unified interface for interacting with them.
18+
19+
Refer to the table below for an overview of the available attention families and to the [Available backends](#available-backends) section for a more complete list.
20+
21+
| attention family | main feature |
22+
|---|---|
23+
| FlashAttention | minimizes memory reads/writes through tiling and recomputation |
24+
| SageAttention | quantizes attention to int8 |
25+
| PyTorch native | built-in PyTorch implementation using [scaled_dot_product_attention](./fp16#scaled-dot-product-attention) |
26+
| xFormers | memory-efficient attention with support for various attention kernels |
27+
28+
This guide will show you how to set and use the different attention backends.
29+
30+
## set_attention_backend
31+
32+
The [`~ModelMixin.set_attention_backend`] method iterates through all the modules in the model and sets the appropriate attention backend to use. The attention backend setting persists until [`~ModelMixin.reset_attention_backend`] is called.
33+
34+
The example below demonstrates how to enable the `_flash_3_hub` implementation for FlashAttention-3 from the [kernel](https://github.com/huggingface/kernels) library, which allows you to instantly use optimized compute kernels from the Hub without requiring any setup.
35+
36+
> [!TIP]
37+
> FlashAttention-3 is not supported for non-Hopper architectures, in which case, use FlashAttention with `set_attention_backend("flash")`.
38+
39+
```py
40+
import torch
41+
from diffusers import QwenImagePipeline
42+
43+
pipeline = QwenImagePipeline.from_pretrained(
44+
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
45+
)
46+
pipeline.transformer.set_attention_backend("_flash_3_hub")
47+
48+
prompt = """
49+
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
50+
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
51+
"""
52+
pipeline(prompt).images[0]
53+
```
54+
55+
To restore the default attention backend, call [`~ModelMixin.reset_attention_backend`].
56+
57+
```py
58+
pipeline.transformer.reset_attention_backend()
59+
```
60+
61+
## attention_backend context manager
62+
63+
The [attention_backend](https://github.com/huggingface/diffusers/blob/5e181eddfe7e44c1444a2511b0d8e21d177850a0/src/diffusers/models/attention_dispatch.py#L225) context manager temporarily sets an attention backend for a model within the context. Outside the context, the default attention (PyTorch's native scaled dot product attention) is used. This is useful if you want to use different backends for different parts of a pipeline or if you want to test the different backends.
64+
65+
```py
66+
import torch
67+
from diffusers import QwenImagePipeline
68+
69+
pipeline = QwenImagePipeline.from_pretrained(
70+
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
71+
)
72+
prompt = """
73+
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
74+
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
75+
"""
76+
77+
with attention_backend("_flash_3_hub"):
78+
image = pipeline(prompt).images[0]
79+
```
80+
81+
## Available backends
82+
83+
Refer to the table below for a complete list of available attention backends and their variants.
84+
85+
| Backend Name | Family | Description |
86+
|--------------|--------|-------------|
87+
| `native` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | Default backend using PyTorch's scaled_dot_product_attention |
88+
| `flex` | [FlexAttention](https://docs.pytorch.org/docs/stable/nn.attention.flex_attention.html#module-torch.nn.attention.flex_attention) | PyTorch FlexAttention implementation |
89+
| `_native_cudnn` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | CuDNN-optimized attention |
90+
| `_native_efficient` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | Memory-efficient attention |
91+
| `_native_flash` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | PyTorch's FlashAttention |
92+
| `_native_math` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | Math-based attention (fallback) |
93+
| `_native_npu` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | NPU-optimized attention |
94+
| `_native_xla` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | XLA-optimized attention |
95+
| `flash` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-2 |
96+
| `flash_varlen` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention |
97+
| `_flash_3` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-3 |
98+
| `_flash_varlen_3` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention-3 |
99+
| `_flash_3_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-3 from kernels |
100+
| `sage` | [SageAttention](https://github.com/thu-ml/SageAttention) | Quantized attention (INT8 QK) |
101+
| `sage_varlen` | [SageAttention](https://github.com/thu-ml/SageAttention) | Variable length SageAttention |
102+
| `_sage_qk_int8_pv_fp8_cuda` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP8 PV (CUDA) |
103+
| `_sage_qk_int8_pv_fp8_cuda_sm90` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP8 PV (SM90) |
104+
| `_sage_qk_int8_pv_fp16_cuda` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP16 PV (CUDA) |
105+
| `_sage_qk_int8_pv_fp16_triton` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP16 PV (Triton) |
106+
| `xformers` | [xFormers](https://github.com/facebookresearch/xformers) | Memory-efficient attention |

docs/source/en/using-diffusers/models.md

Lines changed: 0 additions & 120 deletions
This file was deleted.

0 commit comments

Comments
 (0)