|
| 1 | +# Copyright 2025 The HuggingFace Team. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import html |
| 16 | +from typing import List, Optional, Union |
| 17 | + |
| 18 | +import regex as re |
| 19 | +import torch |
| 20 | +from transformers import AutoTokenizer, UMT5EncoderModel |
| 21 | + |
| 22 | +from ...configuration_utils import FrozenDict |
| 23 | +from ...guiders import ClassifierFreeGuidance |
| 24 | +from ...utils import is_ftfy_available, logging |
| 25 | +from ..modular_pipeline import PipelineBlock, PipelineState |
| 26 | +from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam |
| 27 | +from .modular_pipeline import WanModularPipeline |
| 28 | + |
| 29 | + |
| 30 | +if is_ftfy_available(): |
| 31 | + import ftfy |
| 32 | + |
| 33 | + |
| 34 | +logger = logging.get_logger(__name__) # pylint: disable=invalid-name |
| 35 | + |
| 36 | + |
| 37 | +def basic_clean(text): |
| 38 | + text = ftfy.fix_text(text) |
| 39 | + text = html.unescape(html.unescape(text)) |
| 40 | + return text.strip() |
| 41 | + |
| 42 | + |
| 43 | +def whitespace_clean(text): |
| 44 | + text = re.sub(r"\s+", " ", text) |
| 45 | + text = text.strip() |
| 46 | + return text |
| 47 | + |
| 48 | + |
| 49 | +def prompt_clean(text): |
| 50 | + text = whitespace_clean(basic_clean(text)) |
| 51 | + return text |
| 52 | + |
| 53 | + |
| 54 | +class WanTextEncoderStep(PipelineBlock): |
| 55 | + model_name = "wan" |
| 56 | + |
| 57 | + @property |
| 58 | + def description(self) -> str: |
| 59 | + return "Text Encoder step that generate text_embeddings to guide the video generation" |
| 60 | + |
| 61 | + @property |
| 62 | + def expected_components(self) -> List[ComponentSpec]: |
| 63 | + return [ |
| 64 | + ComponentSpec("text_encoder", UMT5EncoderModel), |
| 65 | + ComponentSpec("tokenizer", AutoTokenizer), |
| 66 | + ComponentSpec( |
| 67 | + "guider", |
| 68 | + ClassifierFreeGuidance, |
| 69 | + config=FrozenDict({"guidance_scale": 5.0}), |
| 70 | + default_creation_method="from_config", |
| 71 | + ), |
| 72 | + ] |
| 73 | + |
| 74 | + @property |
| 75 | + def expected_configs(self) -> List[ConfigSpec]: |
| 76 | + return [] |
| 77 | + |
| 78 | + @property |
| 79 | + def inputs(self) -> List[InputParam]: |
| 80 | + return [ |
| 81 | + InputParam("prompt"), |
| 82 | + InputParam("negative_prompt"), |
| 83 | + InputParam("attention_kwargs"), |
| 84 | + ] |
| 85 | + |
| 86 | + @property |
| 87 | + def intermediate_outputs(self) -> List[OutputParam]: |
| 88 | + return [ |
| 89 | + OutputParam( |
| 90 | + "prompt_embeds", |
| 91 | + type_hint=torch.Tensor, |
| 92 | + kwargs_type="guider_input_fields", |
| 93 | + description="text embeddings used to guide the image generation", |
| 94 | + ), |
| 95 | + OutputParam( |
| 96 | + "negative_prompt_embeds", |
| 97 | + type_hint=torch.Tensor, |
| 98 | + kwargs_type="guider_input_fields", |
| 99 | + description="negative text embeddings used to guide the image generation", |
| 100 | + ), |
| 101 | + ] |
| 102 | + |
| 103 | + @staticmethod |
| 104 | + def check_inputs(block_state): |
| 105 | + if block_state.prompt is not None and ( |
| 106 | + not isinstance(block_state.prompt, str) and not isinstance(block_state.prompt, list) |
| 107 | + ): |
| 108 | + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}") |
| 109 | + |
| 110 | + @staticmethod |
| 111 | + def _get_t5_prompt_embeds( |
| 112 | + components, |
| 113 | + prompt: Union[str, List[str]], |
| 114 | + max_sequence_length: int, |
| 115 | + device: torch.device, |
| 116 | + ): |
| 117 | + dtype = components.text_encoder.dtype |
| 118 | + prompt = [prompt] if isinstance(prompt, str) else prompt |
| 119 | + prompt = [prompt_clean(u) for u in prompt] |
| 120 | + |
| 121 | + text_inputs = components.tokenizer( |
| 122 | + prompt, |
| 123 | + padding="max_length", |
| 124 | + max_length=max_sequence_length, |
| 125 | + truncation=True, |
| 126 | + add_special_tokens=True, |
| 127 | + return_attention_mask=True, |
| 128 | + return_tensors="pt", |
| 129 | + ) |
| 130 | + text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask |
| 131 | + seq_lens = mask.gt(0).sum(dim=1).long() |
| 132 | + prompt_embeds = components.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state |
| 133 | + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
| 134 | + prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)] |
| 135 | + prompt_embeds = torch.stack( |
| 136 | + [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0 |
| 137 | + ) |
| 138 | + |
| 139 | + return prompt_embeds |
| 140 | + |
| 141 | + @staticmethod |
| 142 | + def encode_prompt( |
| 143 | + components, |
| 144 | + prompt: str, |
| 145 | + device: Optional[torch.device] = None, |
| 146 | + num_videos_per_prompt: int = 1, |
| 147 | + prepare_unconditional_embeds: bool = True, |
| 148 | + negative_prompt: Optional[str] = None, |
| 149 | + prompt_embeds: Optional[torch.Tensor] = None, |
| 150 | + negative_prompt_embeds: Optional[torch.Tensor] = None, |
| 151 | + max_sequence_length: int = 512, |
| 152 | + ): |
| 153 | + r""" |
| 154 | + Encodes the prompt into text encoder hidden states. |
| 155 | +
|
| 156 | + Args: |
| 157 | + prompt (`str` or `List[str]`, *optional*): |
| 158 | + prompt to be encoded |
| 159 | + device: (`torch.device`): |
| 160 | + torch device |
| 161 | + num_videos_per_prompt (`int`): |
| 162 | + number of videos that should be generated per prompt |
| 163 | + prepare_unconditional_embeds (`bool`): |
| 164 | + whether to use prepare unconditional embeddings or not |
| 165 | + negative_prompt (`str` or `List[str]`, *optional*): |
| 166 | + The prompt or prompts not to guide the image generation. If not defined, one has to pass |
| 167 | + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
| 168 | + less than `1`). |
| 169 | + prompt_embeds (`torch.Tensor`, *optional*): |
| 170 | + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
| 171 | + provided, text embeddings will be generated from `prompt` input argument. |
| 172 | + negative_prompt_embeds (`torch.Tensor`, *optional*): |
| 173 | + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
| 174 | + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
| 175 | + argument. |
| 176 | + max_sequence_length (`int`, defaults to `512`): |
| 177 | + The maximum number of text tokens to be used for the generation process. |
| 178 | + """ |
| 179 | + device = device or components._execution_device |
| 180 | + prompt = [prompt] if isinstance(prompt, str) else prompt |
| 181 | + batch_size = len(prompt) if prompt is not None else prompt_embeds.shape[0] |
| 182 | + |
| 183 | + if prompt_embeds is None: |
| 184 | + prompt_embeds = WanTextEncoderStep._get_t5_prompt_embeds(components, prompt, max_sequence_length, device) |
| 185 | + |
| 186 | + if prepare_unconditional_embeds and negative_prompt_embeds is None: |
| 187 | + negative_prompt = negative_prompt or "" |
| 188 | + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
| 189 | + |
| 190 | + if prompt is not None and type(prompt) is not type(negative_prompt): |
| 191 | + raise TypeError( |
| 192 | + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
| 193 | + f" {type(prompt)}." |
| 194 | + ) |
| 195 | + elif batch_size != len(negative_prompt): |
| 196 | + raise ValueError( |
| 197 | + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
| 198 | + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
| 199 | + " the batch size of `prompt`." |
| 200 | + ) |
| 201 | + |
| 202 | + negative_prompt_embeds = WanTextEncoderStep._get_t5_prompt_embeds( |
| 203 | + components, negative_prompt, max_sequence_length, device |
| 204 | + ) |
| 205 | + |
| 206 | + bs_embed, seq_len, _ = prompt_embeds.shape |
| 207 | + prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
| 208 | + prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) |
| 209 | + |
| 210 | + if prepare_unconditional_embeds: |
| 211 | + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
| 212 | + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
| 213 | + |
| 214 | + return prompt_embeds, negative_prompt_embeds |
| 215 | + |
| 216 | + @torch.no_grad() |
| 217 | + def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState: |
| 218 | + # Get inputs and intermediates |
| 219 | + block_state = self.get_block_state(state) |
| 220 | + self.check_inputs(block_state) |
| 221 | + |
| 222 | + block_state.prepare_unconditional_embeds = components.guider.num_conditions > 1 |
| 223 | + block_state.device = components._execution_device |
| 224 | + |
| 225 | + # Encode input prompt |
| 226 | + ( |
| 227 | + block_state.prompt_embeds, |
| 228 | + block_state.negative_prompt_embeds, |
| 229 | + ) = self.encode_prompt( |
| 230 | + components, |
| 231 | + block_state.prompt, |
| 232 | + block_state.device, |
| 233 | + 1, |
| 234 | + block_state.prepare_unconditional_embeds, |
| 235 | + block_state.negative_prompt, |
| 236 | + prompt_embeds=None, |
| 237 | + negative_prompt_embeds=None, |
| 238 | + ) |
| 239 | + |
| 240 | + # Add outputs |
| 241 | + self.set_block_state(state, block_state) |
| 242 | + return components, state |
0 commit comments