@@ -132,6 +132,62 @@ wav = model.generate(text, audio_prompt_path=AUDIO_PROMPT_PATH)
132
132
ta.save("test-2.wav", wav, model.sr)` ,
133
133
] ;
134
134
135
+ export const contexttab = ( ) : string [ ] => {
136
+ const installSnippet = `pip install git+https://github.com/SAP-samples/contexttab` ;
137
+
138
+ const classificationSnippet = `# Run a classification task
139
+ from sklearn.datasets import load_breast_cancer
140
+ from sklearn.metrics import accuracy_score
141
+ from sklearn.model_selection import train_test_split
142
+
143
+ from contexttab import ConTextTabClassifier
144
+
145
+ # Load sample data
146
+ X, y = load_breast_cancer(return_X_y=True)
147
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
148
+
149
+ # Initialize a classifier
150
+ # You can omit checkpoint and checkpoint_revision to use the default model
151
+ clf = ConTextTabClassifier(checkpoint="l2/base.pt", checkpoint_revision="v1.0.0", bagging=1, max_context_size=2048)
152
+
153
+ clf.fit(X_train, y_train)
154
+
155
+ # Predict probabilities
156
+ prediction_probabilities = clf.predict_proba(X_test)
157
+ # Predict labels
158
+ predictions = clf.predict(X_test)
159
+ print("Accuracy", accuracy_score(y_test, predictions))` ;
160
+
161
+ const regressionsSnippet = `# Run a regression task
162
+ from sklearn.datasets import fetch_openml
163
+ from sklearn.metrics import r2_score
164
+ from sklearn.model_selection import train_test_split
165
+
166
+ from contexttab import ConTextTabRegressor
167
+
168
+
169
+ # Load sample data
170
+ df = fetch_openml(data_id=531, as_frame=True)
171
+ X = df.data
172
+ y = df.target.astype(float)
173
+
174
+ # Train-test split
175
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
176
+
177
+ # Initialize the regressor
178
+ # You can omit checkpoint and checkpoint_revision to use the default model
179
+ regressor = ConTextTabRegressor(checkpoint="l2/base.pt", checkpoint_revision="v1.0.0", bagging=1, max_context_size=2048)
180
+
181
+ regressor.fit(X_train, y_train)
182
+
183
+ # Predict on the test set
184
+ predictions = regressor.predict(X_test)
185
+
186
+ r2 = r2_score(y_test, predictions)
187
+ print("R² Score:", r2)` ;
188
+ return [ installSnippet , classificationSnippet , regressionsSnippet ] ;
189
+ } ;
190
+
135
191
export const cxr_foundation = ( ) : string [ ] => [
136
192
`# pip install git+https://github.com/Google-Health/cxr-foundation.git#subdirectory=python
137
193
0 commit comments