-
Notifications
You must be signed in to change notification settings - Fork 30.6k
Closed
Labels
Description
System Info
transformers
version: 4.56.1- Platform: Linux-5.14.0-503.40.1.el9_5.x86_64-x86_64-with-glibc2.34
- Python version: 3.12.11
- Huggingface_hub version: 0.35.0
- Safetensors version: 0.5.3
- Accelerate version: 1.10.1
- Accelerate config: not found
- DeepSpeed version: not installed
- PyTorch version (accelerator?): 2.7.1+cu128 (CUDA)
- Tensorflow version (GPU?): not installed (NA)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using distributed or parallel set-up in script?: No
- Using GPU in script?: Yes
- GPU type: NVIDIA B200
Who can help?
I think @zucchini-nlp can help with this.
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examples
folder (such as GLUE/SQuAD, ...) - My own task or dataset (give details below)
Reproduction
Run the following (official) code snippet from the model card:
import requests
from PIL import Image
from transformers import (
LlavaForConditionalGeneration,
AutoTokenizer,
AutoProcessor,
CLIPImageProcessor
)
#In this repo, needed for version < 4.41.1
#from processing_llavagemma import LlavaGemmaProcessor
#processor = LlavaGemmaProcessor( tokenizer=AutoTokenizer.from_pretrained(checkpoint), image_processor=CLIPImageProcessor.from_pretrained(checkpoint))
checkpoint = "Intel/llava-gemma-2b"
# Load model
model = LlavaForConditionalGeneration.from_pretrained(checkpoint)
processor = AutoProcessor.from_pretrained(checkpoint)
# Prepare inputs
# Use gemma chat template
prompt = processor.tokenizer.apply_chat_template(
[{'role': 'user', 'content': "<image>\nWhat's the content of the image?"}],
tokenize=False,
add_generation_prompt=True
)
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt")
# Generate
generate_ids = model.generate(**inputs, max_length=30)
output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
The following error will show up:
TypeError Traceback (most recent call last)
Cell In[46], [line 32](vscode-notebook-cell:?execution_count=46&line=32)
30 url = "https://www.ilankelman.org/stopsigns/australia.jpg"
31 image = Image.open(requests.get(url, stream=True).raw)
---> [32](vscode-notebook-cell:?execution_count=46&line=32) inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
34 # Generate
35 generate_ids = model.generate(**inputs)
File .../transformers/models/llava/processing_llava.py:156, in LlavaProcessor.__call__(self, images, text, audio, videos, **kwargs)
154 pixel_values = image_inputs["pixel_values"]
155 height, width = get_image_size(to_numpy_array(pixel_values[0]))
--> [156](.../transformers/models/llava/processing_llava.py:156) num_image_tokens = (height // self.patch_size) * (
157 width // self.patch_size
158 ) + self.num_additional_image_tokens
159 if self.vision_feature_select_strategy == "default":
160 num_image_tokens -= 1
TypeError: unsupported operand type(s) for //: 'int' and 'NoneType'
Comparing this repo and the LLaVA 1.5 repo, it seems that the processor_config.json
file is missing. Adding the following code makes the model (seemingly) work:
processor.num_additional_image_tokens = 1
processor.patch_size = 14
processor.vision_feature_select_strategy = "default"
Expected behavior
The code should run as-is without errors.