|
| 1 | +import os |
| 2 | + |
| 3 | +import keras |
| 4 | +import pytest |
| 5 | +from keras import ops |
| 6 | + |
| 7 | +from keras_hub.src.models.dinov3.dinov3_backbone import DINOV3Backbone |
| 8 | +from keras_hub.src.tests.test_case import TestCase |
| 9 | + |
| 10 | + |
| 11 | +class DINOV3BackboneTest(TestCase): |
| 12 | + def setUp(self): |
| 13 | + self.init_kwargs = { |
| 14 | + "patch_size": 14, |
| 15 | + "num_layers": 2, |
| 16 | + "hidden_dim": 16, |
| 17 | + "num_heads": 2, |
| 18 | + "intermediate_dim": 16 * 4, |
| 19 | + "layer_scale_init_value": 1.0, |
| 20 | + "num_register_tokens": 4, |
| 21 | + "use_gated_mlp": False, |
| 22 | + "image_shape": (70, 70, 3), |
| 23 | + "name": "dinov3_backbone", |
| 24 | + } |
| 25 | + self.input_data = { |
| 26 | + "images": ops.ones((2, 70, 70, 3)), |
| 27 | + } |
| 28 | + |
| 29 | + def test_backbone_basics(self): |
| 30 | + patch_size = self.init_kwargs["patch_size"] |
| 31 | + image_size = self.init_kwargs["image_shape"][0] |
| 32 | + hidden_dim = self.init_kwargs["hidden_dim"] |
| 33 | + num_register_tokens = self.init_kwargs["num_register_tokens"] |
| 34 | + sequence_length = ( |
| 35 | + (image_size // patch_size) ** 2 + 1 + num_register_tokens |
| 36 | + ) |
| 37 | + self.run_vision_backbone_test( |
| 38 | + cls=DINOV3Backbone, |
| 39 | + init_kwargs=self.init_kwargs, |
| 40 | + input_data=self.input_data, |
| 41 | + expected_output_shape=(2, sequence_length, hidden_dim), |
| 42 | + expected_pyramid_output_keys=["stem", "stage1", "stage2"], |
| 43 | + expected_pyramid_image_sizes=[(sequence_length, hidden_dim)] * 3, |
| 44 | + run_data_format_check=False, |
| 45 | + ) |
| 46 | + |
| 47 | + @pytest.mark.large |
| 48 | + def test_saved_model(self): |
| 49 | + self.run_model_saving_test( |
| 50 | + cls=DINOV3Backbone, |
| 51 | + init_kwargs=self.init_kwargs, |
| 52 | + input_data=self.input_data, |
| 53 | + ) |
| 54 | + |
| 55 | + @pytest.mark.large |
| 56 | + def test_position_embedding_interpolation(self): |
| 57 | + model = DINOV3Backbone(**self.init_kwargs) |
| 58 | + model_output = model(self.input_data) |
| 59 | + |
| 60 | + # Test not using interpolation in `save` and `load_model`. |
| 61 | + path = os.path.join(self.get_temp_dir(), "model.keras") |
| 62 | + model.save(path) |
| 63 | + restored_model = keras.models.load_model(path) |
| 64 | + restored_output = restored_model(self.input_data) |
| 65 | + self.assertAllClose(model_output, restored_output, atol=1e-5, rtol=1e-5) |
| 66 | + |
| 67 | + # Test using interpolation in `save_to_preset` and `from_preset` if |
| 68 | + # image_shape is different. |
| 69 | + path = os.path.join(self.get_temp_dir(), "model") |
| 70 | + model.save_to_preset(path) |
| 71 | + restored_model = DINOV3Backbone.from_preset( |
| 72 | + path, |
| 73 | + image_shape=(128, 128, 3), # From 70 to 128. |
| 74 | + ) |
| 75 | + input_data = { |
| 76 | + "images": ops.ones((2, 128, 128, 3)), |
| 77 | + } |
| 78 | + restored_output = restored_model(input_data) |
| 79 | + self.assertNotEqual(model_output.shape, restored_output.shape) |
| 80 | + |
| 81 | + @pytest.mark.kaggle_key_required |
| 82 | + @pytest.mark.extra_large |
| 83 | + def test_smallest_preset(self): |
| 84 | + self.skipTest("Presets are not uploaded yet.") |
| 85 | + self.run_preset_test( |
| 86 | + cls=DINOV3Backbone, |
| 87 | + preset="dinov3_vit_small_lvd1689m", |
| 88 | + input_data=self.input_data, |
| 89 | + expected_output_shape=(2, 1374, 768), |
| 90 | + ) |
| 91 | + |
| 92 | + @pytest.mark.kaggle_key_required |
| 93 | + @pytest.mark.extra_large |
| 94 | + def test_all_presets(self): |
| 95 | + self.skipTest("Presets are not uploaded yet.") |
| 96 | + for preset in DINOV3Backbone.presets: |
| 97 | + self.run_preset_test( |
| 98 | + cls=DINOV3Backbone, |
| 99 | + preset=preset, |
| 100 | + input_data=self.input_data, |
| 101 | + ) |
0 commit comments