Skip to content

Commit 177f01a

Browse files
committed
comment + finrank version
1 parent 3ffa427 commit 177f01a

File tree

2 files changed

+8
-0
lines changed

2 files changed

+8
-0
lines changed

Mathlib/LinearAlgebra/Dimension/Basic.lean

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -229,6 +229,11 @@ theorem rank_eq_of_equiv_equiv (i : R → R') (j : M ≃+ M₁)
229229
end
230230
end Semiring
231231

232+
/-- TODO: prove that nontrivial commutative semirings satisfy the strong rank condition,
233+
following *Free sets and free subsemimodules in a semimodule* by Yi-Jia Tan, Theorem 3.2.
234+
235+
Rings `R` that fail the strong rank condition but satisfy `rank R R = 1` are expected to exist, see
236+
https://mathoverflow.net/questions/317422/rings-that-fail-to-satisfy-the-strong-rank-condition. -/
232237
theorem CommSemiring.rank_self (R) [CommSemiring R] : Module.rank R R = 1 := by
233238
nontriviality R
234239
rw [le_antisymm_iff, ← not_lt, ← Order.succ_le_iff, ← Nat.cast_one, ← nat_succ,

Mathlib/LinearAlgebra/Dimension/Finrank.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -68,6 +68,9 @@ noncomputable def finrank (R M : Type*) [Semiring R] [AddCommMonoid M] [Module R
6868
theorem finrank_eq_of_rank_eq {n : ℕ} (h : Module.rank R M = ↑n) : finrank R M = n := by
6969
simp [finrank, h]
7070

71+
theorem CommSemiring.finrank_self (R) [CommSemiring R] : Module.finrank R R = 1 :=
72+
finrank_eq_of_rank_eq (rank_self R)
73+
7174
lemma rank_eq_one_iff_finrank_eq_one : Module.rank R M = 1 ↔ finrank R M = 1 :=
7275
Cardinal.toNat_eq_one.symm
7376

0 commit comments

Comments
 (0)