Skip to content

Commit 48eb806

Browse files
committed
feat(MeasureTheory\Group\Action): add μ(c • s ∩ t) = μ(s ∩ c⁻¹ • t) and similar (#32117)
Adding lemmas (and their symmetric version thereof) `μ(c • s ∩ t) = μ(s ∩ c⁻¹ • t)` `μ(c • s ∪ t) = μ(s ∪ c⁻¹ • t)` `μ(c • s ∖ t) = μ(s ∖ c⁻¹ • t)` `μ(c • s Δ t) = μ(s Δ c⁻¹ • t)` for μ a `SMulInvariantMeasure`.
1 parent 3486100 commit 48eb806

File tree

1 file changed

+33
-1
lines changed

1 file changed

+33
-1
lines changed

Mathlib/MeasureTheory/Group/Action.lean

Lines changed: 33 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ some basic properties of such measures.
2525
@[expose] public section
2626

2727

28-
open scoped ENNReal NNReal Pointwise Topology
28+
open scoped ENNReal NNReal Pointwise Topology symmDiff
2929
open MeasureTheory.Measure Set Function Filter
3030

3131
namespace MeasureTheory
@@ -105,6 +105,38 @@ theorem measure_preimage_smul (c : G) (s : Set α) : μ ((c • ·) ⁻¹' s) =
105105
theorem measure_smul (c : G) (s : Set α) : μ (c • s) = μ s := by
106106
simpa only [preimage_smul_inv] using measure_preimage_smul μ c⁻¹ s
107107

108+
@[to_additive (attr := simp)]
109+
theorem measure_inter_inv_smul (c : G) (s t : Set α) : μ (s ∩ c⁻¹ • t) = μ (c • s ∩ t) := by
110+
rw [← measure_smul _ c, smul_set_inter, smul_smul, mul_inv_cancel, one_smul]
111+
112+
@[to_additive (attr := simp)]
113+
theorem measure_inv_smul_inter (c : G) (s t : Set α) : μ (c⁻¹ • s ∩ t) = μ (s ∩ c • t) := by
114+
simpa [inv_inv] using (measure_inter_inv_smul _ c⁻¹ _ _).symm
115+
116+
@[to_additive (attr := simp)]
117+
theorem measure_union_inv_smul (c : G) (s t : Set α) : μ (s ∪ c⁻¹ • t) = μ (c • s ∪ t) := by
118+
rw [← measure_smul _ c, smul_set_union, smul_smul, mul_inv_cancel, one_smul]
119+
120+
@[to_additive (attr := simp)]
121+
theorem measure_inv_smul_union (c : G) (s t : Set α) : μ (c⁻¹ • s ∪ t) = μ (s ∪ c • t) := by
122+
simpa [inv_inv] using (measure_union_inv_smul _ c⁻¹ _ _).symm
123+
124+
@[to_additive (attr := simp)]
125+
theorem measure_sdiff_inv_smul (c : G) (s t : Set α) : μ (s \ c⁻¹ • t) = μ (c • s \ t) := by
126+
rw [← measure_smul _ c, smul_set_sdiff, smul_smul, mul_inv_cancel, one_smul]
127+
128+
@[to_additive (attr := simp)]
129+
theorem measure_inv_smul_sdiff (c : G) (s t : Set α) : μ (c⁻¹ • s \ t) = μ (s \ c • t) := by
130+
simpa [inv_inv] using (measure_sdiff_inv_smul _ c⁻¹ _ _).symm
131+
132+
@[to_additive (attr := simp)]
133+
theorem measure_symmDiff_inv_smul (c : G) (s t : Set α) : μ (s ∆ (c⁻¹ • t)) = μ ((c • s) ∆ t) := by
134+
rw [← measure_smul _ c, smul_set_symmDiff, smul_smul, mul_inv_cancel, one_smul]
135+
136+
@[to_additive (attr := simp)]
137+
theorem measure_inv_smul_symmDiff (c : G) (s t : Set α) : μ ((c⁻¹ • s) ∆ t) = μ (s ∆ (c • t)) := by
138+
simpa [inv_inv] using (measure_symmDiff_inv_smul _ c⁻¹ _ _).symm
139+
108140
variable {μ}
109141

110142
@[to_additive]

0 commit comments

Comments
 (0)