@@ -25,7 +25,7 @@ some basic properties of such measures.
2525@[expose] public section
2626
2727
28- open scoped ENNReal NNReal Pointwise Topology
28+ open scoped ENNReal NNReal Pointwise Topology symmDiff
2929open MeasureTheory.Measure Set Function Filter
3030
3131namespace MeasureTheory
@@ -105,6 +105,38 @@ theorem measure_preimage_smul (c : G) (s : Set α) : μ ((c • ·) ⁻¹' s) =
105105theorem measure_smul (c : G) (s : Set α) : μ (c • s) = μ s := by
106106 simpa only [preimage_smul_inv] using measure_preimage_smul μ c⁻¹ s
107107
108+ @[to_additive (attr := simp)]
109+ theorem measure_inter_inv_smul (c : G) (s t : Set α) : μ (s ∩ c⁻¹ • t) = μ (c • s ∩ t) := by
110+ rw [← measure_smul _ c, smul_set_inter, smul_smul, mul_inv_cancel, one_smul]
111+
112+ @[to_additive (attr := simp)]
113+ theorem measure_inv_smul_inter (c : G) (s t : Set α) : μ (c⁻¹ • s ∩ t) = μ (s ∩ c • t) := by
114+ simpa [inv_inv] using (measure_inter_inv_smul _ c⁻¹ _ _).symm
115+
116+ @[to_additive (attr := simp)]
117+ theorem measure_union_inv_smul (c : G) (s t : Set α) : μ (s ∪ c⁻¹ • t) = μ (c • s ∪ t) := by
118+ rw [← measure_smul _ c, smul_set_union, smul_smul, mul_inv_cancel, one_smul]
119+
120+ @[to_additive (attr := simp)]
121+ theorem measure_inv_smul_union (c : G) (s t : Set α) : μ (c⁻¹ • s ∪ t) = μ (s ∪ c • t) := by
122+ simpa [inv_inv] using (measure_union_inv_smul _ c⁻¹ _ _).symm
123+
124+ @[to_additive (attr := simp)]
125+ theorem measure_sdiff_inv_smul (c : G) (s t : Set α) : μ (s \ c⁻¹ • t) = μ (c • s \ t) := by
126+ rw [← measure_smul _ c, smul_set_sdiff, smul_smul, mul_inv_cancel, one_smul]
127+
128+ @[to_additive (attr := simp)]
129+ theorem measure_inv_smul_sdiff (c : G) (s t : Set α) : μ (c⁻¹ • s \ t) = μ (s \ c • t) := by
130+ simpa [inv_inv] using (measure_sdiff_inv_smul _ c⁻¹ _ _).symm
131+
132+ @[to_additive (attr := simp)]
133+ theorem measure_symmDiff_inv_smul (c : G) (s t : Set α) : μ (s ∆ (c⁻¹ • t)) = μ ((c • s) ∆ t) := by
134+ rw [← measure_smul _ c, smul_set_symmDiff, smul_smul, mul_inv_cancel, one_smul]
135+
136+ @[to_additive (attr := simp)]
137+ theorem measure_inv_smul_symmDiff (c : G) (s t : Set α) : μ ((c⁻¹ • s) ∆ t) = μ (s ∆ (c • t)) := by
138+ simpa [inv_inv] using (measure_symmDiff_inv_smul _ c⁻¹ _ _).symm
139+
108140variable {μ}
109141
110142@[to_additive]
0 commit comments