Skip to content

ENH: slow solver on large scale problems with majority of features screened #177

@mathurinm

Description

@mathurinm

Finance:

import time
import libsvmdata
import numpy as np
from numpy.linalg import norm
from celer import Lasso 

X, y = libsvmdata.fetch_libsvm("finance", min_nnz=3)
alpha_max = norm(X.T @ y, ord=np.inf) / len(y)

t0 = time.time()
clf = Lasso(alpha=alpha_max/20, fit_intercept=False, verbose=True).fit(X, y)
dur = time.time() - t0
print(f"{dur:.2f} seconds")

The first feature is super correlated with y, the support is small. Lots of features are screened, the convergence should be way faster for later iterations, and it is not.

In [19]: t0 = time.time(); clf = Lasso(alpha=alpha_max/20, fit_intercept=False, verbose=True).fit(X, y); dur = time.time() - t0
#########################
##### Computing alpha 1/1
#########################
Iter 0: primal 6.3741726822, gap 5.75e+00, 10 feats in subpb (9089 left)
Iter 1: primal 0.8647719451, gap 7.29e-02, 4 feats in subpb (162 left)
Iter 2: primal 0.8227823469, gap 1.96e-02, 6 feats in subpb (53 left)
Iter 3: primal 0.8144988993, gap 5.66e-03, 4 feats in subpb (14 left)
Iter 4: primal 0.8132372683, gap 1.63e-03, 4 feats in subpb (8 left)
Iter 5: primal 0.8130029142, gap 4.61e-04, 4 feats in subpb (6 left)
Iter 6: primal 0.8129717566, gap 1.35e-04, 3 feats in subpb (3 left)
Iter 7: primal 0.8129684005, gap 3.84e-05
Early exit, gap: 3.84e-05 < 1.00e-04

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions