Skip to content

[Bug]: Dimensionality of posterior statistics #2958

@AdrianSosic

Description

@AdrianSosic

What happened?

Hi, I'm not sure if this is a bug, and if it is, whether it's even possible to fix it without breaking things. But I just noticed that the different posterior statistics one can request from a GPyTorchPosterior have rather inconsistent dimensionality.

Please provide a minimal, reproducible example of the unexpected behavior.

import torch
from botorch.posteriors import GPyTorchPosterior
from gpytorch.distributions import MultivariateNormal

mvn = MultivariateNormal(
    torch.tensor([0.0, 1.0]),
    covariance_matrix=torch.tensor([[1.0, 0.5], [0.5, 1.0]]),
)
posterior = GPyTorchPosterior(mvn)

print("Dim mean: ", posterior.mean.ndim)  # --> 2
print("Dim mode: ", posterior.mode.ndim)  # --> 1
print("Dim variance: ", posterior.variance.ndim)  # --> 2
print("Dim stddev: ", posterior.stddev.ndim)  # --> 1
print("Dim quantile: ", posterior.quantile(torch.tensor(0.5)).ndim)  # --> 2

BoTorch Version

0.14.0

Python Version

3.10

Operating System

macOS

(Optional) Describe any potential fixes you've considered to the issue outlined above.

No response

Pull Request

None

Code of Conduct

  • I agree to follow BoTorch's Code of Conduct

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions