-
Notifications
You must be signed in to change notification settings - Fork 83
Open
Labels
module: torchlibRelated to the torch/aten function lib in developmentRelated to the torch/aten function lib in development
Milestone
Description
Implement the aten_binear function at
def aten_bilinear( |
Operator schema: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias=None) -> Tensor
Docs:
Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b`.
Args:
in1_features: size of each first input sample, must be > 0
in2_features: size of each second input sample, must be > 0
out_features: size of each output sample, must be > 0
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input1: :math:`(*, H_\text{in1})` where :math:`H_\text{in1}=\text{in1\_features}` and
:math:`*` means any number of additional dimensions including none. All but the last dimension
of the inputs should be the same.
- Input2: :math:`(*, H_\text{in2})` where :math:`H_\text{in2}=\text{in2\_features}`.
- Output: :math:`(*, H_\text{out})` where :math:`H_\text{out}=\text{out\_features}`
and all but the last dimension are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in1\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in1\_features}}`
Copilot
Metadata
Metadata
Assignees
Labels
module: torchlibRelated to the torch/aten function lib in developmentRelated to the torch/aten function lib in development