+Unlike benchmarks that focus on model architecture or hardware, the AlgoPerf benchmark isolates the training algorithm itself, measuring how quickly it can achieve target performance levels on a fixed set of representative deep learning tasks. These tasks span various domains, including image classification, speech recognition, machine translation, and more, all running on standardized hardware (8x NVIDIA V100 GPUs). The benchmark includes 8 base workloads, which are fully specified. In addition there are definitions for "randomized" workloads, which are variations of the fixed workloads, which are designed to discourage overfitting. These randomized workloads were used for scoring the AlgPerf competition but will not be used for future scoring.
0 commit comments