You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The SDK Manager is a comprehensive development tool that streamlines the process of discovering, installing, and managing multiple software development kits for edge AI applications. Designed for developers working with Intel's edge computing ecosystem, it eliminates the complexity of manually configuring SDK combinations by providing automated dependency resolution, version compatibility checking, and integrated toolchain setup. The tool supports interactive wizard-guided selection for developers to download and install the SDK directly into their development environment.
9
6
10
7
Built with developer productivity in mind, the SDK Manager handles cross-platform builds, maintains isolated development environments, and provides real-time compatibility validation across different SDK versions. It includes extensive documentation with code samples, API references, and troubleshooting guides. Whether you're prototyping edge AI solutions or deploying production applications, the SDK Manager ensures consistent, reproducible development environments across your team and deployment targets.
11
8
12
-
.. toctree::
13
-
:caption:Metro SDK Manager
14
-
15
-
install-sdk
16
-
17
-
.. toctree::
18
-
:caption:Metro Vision AI SDK
19
-
:hidden:
20
-
21
-
metro-vision-ai-sdk/get-started.md
22
-
metro-vision-ai-sdk/tutorial-1.md
23
-
metro-vision-ai-sdk/tutorial-2.md
24
-
metro-vision-ai-sdk/tutorial-3.md
25
-
metro-vision-ai-sdk/tutorial-4.md
26
-
metro-vision-ai-sdk/tutorial-5.md
27
-
28
-
.. toctree::
29
-
:caption:Metro Gen AI SDK
30
-
:hidden:
31
-
32
-
metro-gen-ai-sdk/get-started.md
33
-
34
-
.. toctree::
35
-
:caption:Visual AI Demo Kit
36
-
:hidden:
37
-
38
-
visual-ai-demo-kit/get-started.md
39
-
visual-ai-demo-kit/tutorial-1.md
40
-
visual-ai-demo-kit/tutorial-2.md
41
-
visual-ai-demo-kit/tutorial-3.md
42
-
43
-
.. toctree::
44
-
:caption:Community and Support
45
-
:hidden:
46
-
47
-
support
9
+
<!--hide_directive
10
+
:::{toctree}
11
+
:hidden:
12
+
13
+
install-sdk
14
+
Metro Vision AI SDK <metro-vision-ai-sdk/get-started>
15
+
Metro Gen AI SDK <metro-gen-ai-sdk/get-started>
16
+
Visual AI Demo Kit <visual-ai-demo-kit/get-started.md>
-[Multimodal Embedding Serving](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/multimodal-embedding-serving/docs/user-guide/Overview.md) - Embedding generation service architecture and API documentation
95
-
-[Visual Data Preparation For Retrieval](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/visual-data-preparation-for-retrieval/vdms/docs/user-guide/Overview.md) - VDMS integration and visual data management workflows
96
-
-[VLM OpenVINO Serving](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/vlm-openvino-serving/docs/user-guide/Overview.md) - Vision-language model deployment and optimization guidelines
97
-
-[Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html) - Complete development toolkit documentation and microservice API references
98
-
-[Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html) - Comprehensive application suite documentation with Gen AI implementation examples
\- Embedding generation service architecture and API documentation
99
+
-[Visual Data Preparation For Retrieval](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/visual-data-preparation-for-retrieval/vdms/docs/user-guide/Overview.md)
100
+
\- VDMS integration and visual data management workflows
\- Vision-language model deployment and optimization guidelines
103
+
-[Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html)
104
+
\- Complete development toolkit documentation and microservice API references
105
+
-[Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html)
106
+
\- Comprehensive application suite documentation with Gen AI implementation examples
99
107
100
108
### Support Channels
101
-
-[GitHub Issues](https://github.com/open-edge-platform/edge-ai-libraries/issues) - Technical issue tracking and community support for Gen AI applications
Continue your learning journey with these hands-on tutorials:
115
121
116
-
### [Tutorial 1: OpenVINO Model Benchmark](tutorial-1.md)
122
+
### [Tutorial 1: OpenVINO Model Benchmark](./tutorial-1.md)
123
+
117
124
Learn to benchmark AI model performance across different Intel hardware (CPU, GPU, NPU) and understand optimization techniques for production deployments.
118
125
119
-
### [Tutorial 2: Multi-Stream Video Processing](tutorial-2.md)
126
+
### [Tutorial 2: Multi-Stream Video Processing](./tutorial-2.md)
127
+
120
128
Build scalable video analytics solutions by processing multiple video streams simultaneously with hardware acceleration.
Develop a complete object detection application with interactive controls, performance monitoring, and production-ready features.
124
133
125
-
### [Tutorial 4: Advanced Video Analytics Pipelines](tutorial-4.md)
126
-
Create sophisticated video analytics using Intel® DL Streamer framework, including human pose estimation and multi-model integration.
134
+
### [Tutorial 4: Advanced Video Analytics Pipelines](./tutorial-4.md)
127
135
136
+
Create sophisticated video analytics using Intel® DL Streamer framework, including human pose estimation and multi-model integration.
128
137
129
138
## Additional Resources
130
139
131
140
### Technical Documentation
132
-
-[DLStreamer](http://docs.openedgeplatform.intel.com/dev/edge-ai-libraries/dl-streamer/index.html) - Comprehensive documentation for Intel's GStreamer-based video analytics framework
133
-
-[DLStreamer Pipeline Server](https://docs.openedgeplatform.intel.com/edge-ai-libraries/dlstreamer-pipeline-server/main/user-guide/Overview.html) - RESTful microservice architecture documentation for scalable video analytics deployment
134
-
-[OpenVINO](https://docs.openvino.ai/2025/get-started.html) - Complete reference for Intel's cross-platform inference optimization toolkit
135
-
-[OpenVINO Model Server](https://docs.openvino.ai/2025/model-server/ovms_what_is_openvino_model_server.html) - Model serving infrastructure documentation for production deployments
136
-
-[Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html) - Comprehensive development toolkit documentation and API references
137
-
-[Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html) - Complete application suite documentation with implementation examples
Copy file name to clipboardExpand all lines: metro-ai-suite/metro-sdk-manager/docs/user-guide/metro-vision-ai-sdk/tutorial-2.md
+12-6Lines changed: 12 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -6,7 +6,7 @@ This tutorial demonstrates advanced video processing capabilities using Intel's
6
6
7
7
Multi-stream video processing is essential for applications like video surveillance, broadcasting, and media production. This tutorial showcases how Intel's hardware acceleration can efficiently decode and composite 16 simultaneous video streams into a single 4K display output, demonstrating the power of Intel® Quick Sync Video technology.
8
8
9
-
> **Platform Compatibility**
9
+
> **Platform Compatibility**
10
10
> This tutorial requires Intel® Core™ or Intel® Core™ Ultra processors with integrated graphics. Intel® Xeon® processors without integrated graphics are not supported for this specific use case.
0 commit comments