Skip to content

Commit c54c3ba

Browse files
[DOCS] Update Metro SDK docs for publishing
1 parent edcabe9 commit c54c3ba

File tree

15 files changed

+272
-196
lines changed

15 files changed

+272
-196
lines changed

metro-ai-suite/metro-sdk-manager/docs/toc.rst

Lines changed: 0 additions & 3 deletions
This file was deleted.
Lines changed: 13 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -1,47 +1,19 @@
1-
Metro SDK Manager
2-
============================================
1+
# Metro SDK Manager
32

4-
5-
Overview
6-
--------
3+
## Overview
74

85
The SDK Manager is a comprehensive development tool that streamlines the process of discovering, installing, and managing multiple software development kits for edge AI applications. Designed for developers working with Intel's edge computing ecosystem, it eliminates the complexity of manually configuring SDK combinations by providing automated dependency resolution, version compatibility checking, and integrated toolchain setup. The tool supports interactive wizard-guided selection for developers to download and install the SDK directly into their development environment.
96

107
Built with developer productivity in mind, the SDK Manager handles cross-platform builds, maintains isolated development environments, and provides real-time compatibility validation across different SDK versions. It includes extensive documentation with code samples, API references, and troubleshooting guides. Whether you're prototyping edge AI solutions or deploying production applications, the SDK Manager ensures consistent, reproducible development environments across your team and deployment targets.
118

12-
.. toctree::
13-
:caption: Metro SDK Manager
14-
15-
install-sdk
16-
17-
.. toctree::
18-
:caption: Metro Vision AI SDK
19-
:hidden:
20-
21-
metro-vision-ai-sdk/get-started.md
22-
metro-vision-ai-sdk/tutorial-1.md
23-
metro-vision-ai-sdk/tutorial-2.md
24-
metro-vision-ai-sdk/tutorial-3.md
25-
metro-vision-ai-sdk/tutorial-4.md
26-
metro-vision-ai-sdk/tutorial-5.md
27-
28-
.. toctree::
29-
:caption: Metro Gen AI SDK
30-
:hidden:
31-
32-
metro-gen-ai-sdk/get-started.md
33-
34-
.. toctree::
35-
:caption: Visual AI Demo Kit
36-
:hidden:
37-
38-
visual-ai-demo-kit/get-started.md
39-
visual-ai-demo-kit/tutorial-1.md
40-
visual-ai-demo-kit/tutorial-2.md
41-
visual-ai-demo-kit/tutorial-3.md
42-
43-
.. toctree::
44-
:caption: Community and Support
45-
:hidden:
46-
47-
support
9+
<!--hide_directive
10+
:::{toctree}
11+
:hidden:
12+
13+
install-sdk
14+
Metro Vision AI SDK <metro-vision-ai-sdk/get-started>
15+
Metro Gen AI SDK <metro-gen-ai-sdk/get-started>
16+
Visual AI Demo Kit <visual-ai-demo-kit/get-started.md>
17+
support
18+
:::
19+
hide_directive-->

metro-ai-suite/metro-sdk-manager/docs/user-guide/install-sdk.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,4 +2,4 @@
22

33
<script type="module" crossorigin src="../_static/installer/iframe-resizer.js"></script>
44
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
5-
<iframe id="installerFrame" src="../_static/installer/selector.html" style="width: 100%; min-width: 350px; border-radius: 8px; overflow-x: auto;" title="Download Metro SDK"></iframe>
5+
<iframe id="installerFrame" src="../_static/installer/selector.html" style="width: 100%; min-width: 350px; min-height:700px; border-radius: 8px; overflow-x: auto;" title="Download Metro SDK"></iframe>

metro-ai-suite/metro-sdk-manager/docs/user-guide/metro-gen-ai-sdk/get-started.md

Lines changed: 20 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@ The Metro Gen AI SDK provides a comprehensive development environment for genera
77
## Learning Objectives
88

99
Upon completion of this guide, you will be able to:
10+
1011
- Install and configure the Metro Gen AI SDK
1112
- Deploy generative AI microservices for document processing and question-answering
1213
- Understand the architecture of RAG-based applications using Intel's AI frameworks
@@ -30,7 +31,6 @@ curl https://raw.githubusercontent.com/open-edge-platform/edge-ai-suites/refs/he
3031

3132
![Metro Gen AI SDK Installation](images/metro-gen-ai-sdk-install.png)
3233

33-
3434
## Question-Answering Application Implementation
3535

3636
This section demonstrates a complete RAG (Retrieval-Augmented Generation) application workflow using the installed Gen AI components.
@@ -69,6 +69,7 @@ Start the complete Gen AI application stack using Docker Compose:
6969
```bash
7070
docker compose up
7171
```
72+
7273
### Step 4: Verify Deployment Status
7374

7475
Check that all application components are running correctly:
@@ -77,7 +78,6 @@ Check that all application components are running correctly:
7778
docker ps
7879
```
7980

80-
8181
### Step 5: Access the Application Interface
8282

8383
Open a web browser and navigate to the application dashboard:
@@ -89,13 +89,23 @@ http://localhost:8101
8989
## Additional Resources
9090

9191
### Technical Documentation
92-
- [Audio Analyzer](https://docs.openedgeplatform.intel.com/dev/edge-ai-libraries/audio-analyzer/index.html) - Comprehensive documentation for multimodal audio processing capabilities
93-
- [Document Ingestion - pgvector](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/document-ingestion/pgvector/docs/get-started.md) - Vector database integration and document processing workflows
94-
- [Multimodal Embedding Serving](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/multimodal-embedding-serving/docs/user-guide/Overview.md) - Embedding generation service architecture and API documentation
95-
- [Visual Data Preparation For Retrieval](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/visual-data-preparation-for-retrieval/vdms/docs/user-guide/Overview.md) - VDMS integration and visual data management workflows
96-
- [VLM OpenVINO Serving](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/vlm-openvino-serving/docs/user-guide/Overview.md) - Vision-language model deployment and optimization guidelines
97-
- [Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html) - Complete development toolkit documentation and microservice API references
98-
- [Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html) - Comprehensive application suite documentation with Gen AI implementation examples
92+
93+
- [Audio Analyzer](https://docs.openedgeplatform.intel.com/dev/edge-ai-libraries/audio-analyzer/index.html)
94+
\- Comprehensive documentation for multimodal audio processing capabilities
95+
- [Document Ingestion - pgvector](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/document-ingestion/pgvector/docs/get-started.md)
96+
\- Vector database integration and document processing workflows
97+
- [Multimodal Embedding Serving](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/multimodal-embedding-serving/docs/user-guide/Overview.md)
98+
\- Embedding generation service architecture and API documentation
99+
- [Visual Data Preparation For Retrieval](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/visual-data-preparation-for-retrieval/vdms/docs/user-guide/Overview.md)
100+
\- VDMS integration and visual data management workflows
101+
- [VLM OpenVINO Serving](https://github.com/open-edge-platform/edge-ai-libraries/blob/main/microservices/vlm-openvino-serving/docs/user-guide/Overview.md)
102+
\- Vision-language model deployment and optimization guidelines
103+
- [Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html)
104+
\- Complete development toolkit documentation and microservice API references
105+
- [Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html)
106+
\- Comprehensive application suite documentation with Gen AI implementation examples
99107

100108
### Support Channels
101-
- [GitHub Issues](https://github.com/open-edge-platform/edge-ai-libraries/issues) - Technical issue tracking and community support for Gen AI applications
109+
110+
- [GitHub Issues](https://github.com/open-edge-platform/edge-ai-libraries/issues)
111+
\- Technical issue tracking and community support for Gen AI applications

metro-ai-suite/metro-sdk-manager/docs/user-guide/metro-vision-ai-sdk/get-started.md

Lines changed: 42 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@ The Metro Vision AI SDK provides a comprehensive development environment for com
77
## Learning Objectives
88

99
Upon completion of this guide, you will be able to:
10+
1011
- Install and configure the Metro Vision AI SDK
1112
- Execute object detection inference on video content
1213
- Understand the basic pipeline architecture for computer vision workflows
@@ -31,6 +32,7 @@ curl https://raw.githubusercontent.com/open-edge-platform/edge-ai-suites/refs/he
3132
![Metro Vision AI SDK Installation](images/metro-vision-ai-sdk-install.png)
3233

3334
The installation process configures the following components:
35+
3436
- Docker containerization platform
3537
- Intel DLStreamer video analytics framework
3638
- OpenVINO inference optimization toolkit
@@ -96,14 +98,18 @@ The resulting output displays the original video content with overlaid detection
9698
## Technology Framework Overview
9799

98100
### DLStreamer Framework
101+
99102
DLStreamer provides a comprehensive video analytics framework built on GStreamer technology. Key capabilities include:
103+
100104
- Multi-format video input support (files, network streams, camera devices)
101105
- Real-time inference execution on video frame sequences
102106
- Flexible output rendering and storage options
103107
- Modular pipeline architecture for custom workflow development
104108

105109
### OpenVINO Optimization Toolkit
110+
106111
OpenVINO delivers cross-platform inference optimization for Intel hardware architectures. Core features include:
112+
107113
- Model format standardization through Intermediate Representation (IR)
108114
- Hardware-specific performance optimization
109115
- Extensive pre-trained model repository
@@ -113,28 +119,52 @@ OpenVINO delivers cross-platform inference optimization for Intel hardware archi
113119

114120
Continue your learning journey with these hands-on tutorials:
115121

116-
### [Tutorial 1: OpenVINO Model Benchmark](tutorial-1.md)
122+
### [Tutorial 1: OpenVINO Model Benchmark](./tutorial-1.md)
123+
117124
Learn to benchmark AI model performance across different Intel hardware (CPU, GPU, NPU) and understand optimization techniques for production deployments.
118125

119-
### [Tutorial 2: Multi-Stream Video Processing](tutorial-2.md)
126+
### [Tutorial 2: Multi-Stream Video Processing](./tutorial-2.md)
127+
120128
Build scalable video analytics solutions by processing multiple video streams simultaneously with hardware acceleration.
121129

122-
### [Tutorial 3: Real-Time Object Detection](tutorial-3.md)
130+
### [Tutorial 3: Real-Time Object Detection](./tutorial-3.md)
131+
123132
Develop a complete object detection application with interactive controls, performance monitoring, and production-ready features.
124133

125-
### [Tutorial 4: Advanced Video Analytics Pipelines](tutorial-4.md)
126-
Create sophisticated video analytics using Intel® DL Streamer framework, including human pose estimation and multi-model integration.
134+
### [Tutorial 4: Advanced Video Analytics Pipelines](./tutorial-4.md)
127135

136+
Create sophisticated video analytics using Intel® DL Streamer framework, including human pose estimation and multi-model integration.
128137

129138
## Additional Resources
130139

131140
### Technical Documentation
132-
- [DLStreamer](http://docs.openedgeplatform.intel.com/dev/edge-ai-libraries/dl-streamer/index.html) - Comprehensive documentation for Intel's GStreamer-based video analytics framework
133-
- [DLStreamer Pipeline Server](https://docs.openedgeplatform.intel.com/edge-ai-libraries/dlstreamer-pipeline-server/main/user-guide/Overview.html) - RESTful microservice architecture documentation for scalable video analytics deployment
134-
- [OpenVINO](https://docs.openvino.ai/2025/get-started.html) - Complete reference for Intel's cross-platform inference optimization toolkit
135-
- [OpenVINO Model Server](https://docs.openvino.ai/2025/model-server/ovms_what_is_openvino_model_server.html) - Model serving infrastructure documentation for production deployments
136-
- [Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html) - Comprehensive development toolkit documentation and API references
137-
- [Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html) - Complete application suite documentation with implementation examples
141+
142+
- [DLStreamer](http://docs.openedgeplatform.intel.com/dev/edge-ai-libraries/dl-streamer/index.html)
143+
\- Comprehensive documentation for Intel's GStreamer-based video analytics framework
144+
- [DLStreamer Pipeline Server](https://docs.openedgeplatform.intel.com/edge-ai-libraries/dlstreamer-pipeline-server/main/user-guide/Overview.html)
145+
\- RESTful microservice architecture documentation for scalable video analytics deployment
146+
- [OpenVINO](https://docs.openvino.ai/2025/get-started.html)
147+
\- Complete reference for Intel's cross-platform inference optimization toolkit
148+
- [OpenVINO Model Server](https://docs.openvino.ai/2025/model-server/ovms_what_is_openvino_model_server.html)
149+
\- Model serving infrastructure documentation for production deployments
150+
- [Edge AI Libraries](https://docs.openedgeplatform.intel.com/dev/ai-libraries.html)
151+
\- Comprehensive development toolkit documentation and API references
152+
- [Edge AI Suites](https://docs.openedgeplatform.intel.com/dev/ai-suite-metro.html)
153+
\- Complete application suite documentation with implementation examples
138154

139155
### Support Channels
140-
- [GitHub Issues](https://github.com/open-edge-platform/edge-ai-suites/issues) - Technical issue tracking and community support
156+
157+
- [GitHub Issues](https://github.com/open-edge-platform/edge-ai-suites/issues)
158+
\- Technical issue tracking and community support
159+
160+
<!--hide_directive
161+
:::{toctree}
162+
:hidden:
163+
164+
tutorial-1
165+
tutorial-2
166+
tutorial-3
167+
tutorial-4
168+
tutorial-5
169+
:::
170+
hide_directive-->

metro-ai-suite/metro-sdk-manager/docs/user-guide/metro-vision-ai-sdk/tutorial-1.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,7 @@ docker run --rm --user=root \
6565
```
6666

6767
This command will:
68+
6869
- Download the YOLOv10s object detection model
6970
- Convert it to OpenVINO IR format (FP16 precision)
7071
- Store the model files in the `public/yolov10s/FP16/` directory
@@ -123,4 +124,4 @@ docker run -it --rm \
123124
-m /home/openvino/public/yolov10s/FP16/yolov10s.xml \
124125
-i /home/openvino/bottle-detection.mp4 \
125126
-d NPU
126-
```
127+
```

metro-ai-suite/metro-sdk-manager/docs/user-guide/metro-vision-ai-sdk/tutorial-2.md

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ This tutorial demonstrates advanced video processing capabilities using Intel's
66

77
Multi-stream video processing is essential for applications like video surveillance, broadcasting, and media production. This tutorial showcases how Intel's hardware acceleration can efficiently decode and composite 16 simultaneous video streams into a single 4K display output, demonstrating the power of Intel® Quick Sync Video technology.
88

9-
> ** Platform Compatibility**
9+
> **Platform Compatibility**
1010
> This tutorial requires Intel® Core™ or Intel® Core™ Ultra processors with integrated graphics. Intel® Xeon® processors without integrated graphics are not supported for this specific use case.
1111
1212
## Time to Complete
@@ -61,6 +61,7 @@ wget -O videos/Big_Buck_Bunny.mp4 "https://test-videos.co.uk/vids/bigbuckbunny/m
6161

6262
**Alternative Download Method:**
6363
If the above link doesn't work, you can download from the official source:
64+
6465
```bash
6566
# Alternative: Download from Internet Archive
6667
wget -O videos/Big_Buck_Bunny.mp4 "https://archive.org/download/BigBuckBunny_124/Content/big_buck_bunny_720p_surround.mp4"
@@ -138,14 +139,16 @@ EOF
138139
The script creates a complex pipeline with these key components:
139140

140141
**Pipeline Architecture:**
142+
141143
- **Input Sources**: 16 identical video file streams
142144
- **Decoder**: `vah264dec` - Hardware-accelerated H.264 decoding using VAAPI
143145
- **Scaling**: `vapostproc` - Hardware-accelerated video post-processing and scaling
144146
- **Composition**: `vacompositor` - Hardware-accelerated video composition
145147
- **Output**: `xvimagesink` - X11-based video display
146148

147149
**Tiled Layout Configuration:**
148-
```
150+
151+
```text
149152
┌─────────┬─────────┬─────────┬─────────┐
150153
│ Stream1 │ Stream2 │ Stream3 │ Stream4 │ ← Row 1 (y=0)
151154
│ 0,0 │ 960,0 │1920,0 │2880,0 │
@@ -162,6 +165,7 @@ The script creates a complex pipeline with these key components:
162165
```
163166

164167
**Performance Optimizations:**
168+
165169
- **VAAPI Acceleration**: Hardware-accelerated decoding, scaling, and composition
166170
- **Fast Scaling**: `scale-method=fast` for optimal performance
167171
- **Async Display**: `sync=false` to prevent frame dropping
@@ -229,7 +233,6 @@ htop
229233
cat /sys/class/drm/card0/gt/gt0/rc6_residency_ms
230234
```
231235

232-
233236
### Step 6: Stop the Application
234237

235238
To stop the video processing pipeline:
@@ -251,22 +254,23 @@ xhost -local:docker
251254
docker system prune -f
252255
```
253256

254-
255257
## Understanding the Technology
256258

257259
### Intel® Quick Sync Video Technology
258260

259261
This tutorial leverages Intel's hardware-accelerated video processing capabilities:
260262

261263
**Hardware Acceleration Benefits:**
264+
262265
- **Dedicated Video Engines**: Separate silicon for video decode/encode operations
263-
- **CPU Offloading**: Frees CPU resources for other computational tasks
266+
- **CPU Offloading**: Frees CPU resources for other computational tasks
264267
- **Power Efficiency**: Lower power consumption compared to software decoding
265268
- **Parallel Processing**: Multiple decode engines can process streams simultaneously
266269

267270
### VAAPI Integration
268271

269272
**Video Acceleration API (VAAPI)** provides:
273+
270274
- **Hardware Abstraction**: Unified interface across Intel graphics generations
271275
- **Pipeline Optimization**: Direct GPU memory access without CPU copies
272276
- **Format Support**: Hardware acceleration for H.264, H.265, VP9, and AV1 codecs
@@ -277,14 +281,16 @@ This tutorial leverages Intel's hardware-accelerated video processing capabiliti
277281
The tutorial demonstrates advanced GStreamer concepts:
278282

279283
**Element Types:**
284+
280285
- **Source Elements**: `filesrc` - File input
281-
- **Demuxer Elements**: `qtdemux` - Container format parsing
286+
- **Demuxer Elements**: `qtdemux` - Container format parsing
282287
- **Decoder Elements**: `vah264dec` - Hardware-accelerated decoding
283288
- **Transform Elements**: `vapostproc` - Hardware scaling and format conversion
284289
- **Compositor Elements**: `vacompositor` - Multi-stream composition
285290
- **Sink Elements**: `xvimagesink` - Display output
286291

287292
**Pipeline Benefits:**
293+
288294
- **Zero-Copy Operations**: Direct GPU memory transfers
289295
- **Parallel Processing**: Concurrent decode of multiple streams
290296
- **Dynamic Reconfiguration**: Runtime pipeline modifications

0 commit comments

Comments
 (0)