Skip to content

Commit e51cac6

Browse files
Adding Quantizing with Accuracy Control using NNCF notebook (#19587)
1 parent d396dc0 commit e51cac6

File tree

94 files changed

+917
-95
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

94 files changed

+917
-95
lines changed

docs/notebooks/001-hello-world-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Hello Image Classification
22
==========================
33

4-
.. _top:
4+
55

66
This basic introduction to OpenVINO™ shows how to do inference with an
77
image classification model.
@@ -15,6 +15,10 @@ created, refer to the `TensorFlow to
1515
OpenVINO <101-tensorflow-classification-to-openvino-with-output.html>`__
1616
tutorial.
1717

18+
19+
20+
.. _top:
21+
1822
**Table of contents**:
1923

2024
- `Imports <#imports>`__

docs/notebooks/003-hello-segmentation-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Hello Image Segmentation
22
========================
33

4-
.. _top:
4+
55

66
A very basic introduction to using segmentation models with OpenVINO™.
77

@@ -12,6 +12,10 @@ Zoo <https://github.com/openvinotoolkit/open_model_zoo/>`__ is used.
1212
ADAS stands for Advanced Driver Assistance Services. The model
1313
recognizes four classes: background, road, curb and mark.
1414

15+
16+
17+
.. _top:
18+
1519
**Table of contents**:
1620

1721
- `Imports <#imports>`__

docs/notebooks/004-hello-detection-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Hello Object Detection
22
======================
33

4-
.. _top:
4+
55

66
A very basic introduction to using object detection models with
77
OpenVINO™.
@@ -18,6 +18,10 @@ corner, ``(x_max, y_max)`` are the coordinates of the bottom right
1818
bounding box corner and ``conf`` is the confidence for the predicted
1919
class.
2020

21+
22+
23+
.. _top:
24+
2125
**Table of contents**:
2226

2327
- `Imports <#imports>`__

docs/notebooks/101-tensorflow-classification-to-openvino-with-output.rst

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Convert a TensorFlow Model to OpenVINO™
22
=======================================
33

4-
.. _top:
4+
55

66
| This short tutorial shows how to convert a TensorFlow
77
`MobileNetV3 <https://docs.openvino.ai/2023.1/omz_models_model_mobilenet_v3_small_1_0_224_tf.html>`__
@@ -13,7 +13,11 @@ Convert a TensorFlow Model to OpenVINO™
1313
Runtime <https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_OV_Runtime_User_Guide.html>`__
1414
and do inference with a sample image.
1515
16-
| **Table of contents**:
16+
17+
18+
| .. _top:
19+
20+
**Table of contents**:
1721

1822
- `Imports <#imports>`__
1923
- `Settings <#settings>`__

docs/notebooks/102-pytorch-onnx-to-openvino-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Convert a PyTorch Model to ONNX and OpenVINO™ IR
22
================================================
33

4-
.. _top:
4+
55

66
This tutorial demonstrates step-by-step instructions on how to do
77
inference on a PyTorch semantic segmentation model, using OpenVINO
@@ -35,6 +35,10 @@ plant, sheep, sofa, train, tv monitor**
3535
More information about the model is available in the `torchvision
3636
documentation <https://pytorch.org/vision/main/models/lraspp.html>`__
3737

38+
39+
40+
.. _top:
41+
3842
**Table of contents**:
3943

4044
- `Preparation <#preparation>`__

docs/notebooks/102-pytorch-to-openvino-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Convert a PyTorch Model to OpenVINO™ IR
22
=======================================
33

4-
.. _top:
4+
55

66
This tutorial demonstrates step-by-step instructions on how to do
77
inference on a PyTorch classification model using OpenVINO Runtime.
@@ -31,6 +31,10 @@ but elevated to the design space level. The RegNet design space provides
3131
simple and fast networks that work well across a wide range of flop
3232
regimes.
3333

34+
35+
36+
.. _top:
37+
3438
**Table of contents**:
3539

3640
- `Prerequisites <#prerequisites>`__

docs/notebooks/103-paddle-to-openvino-classification-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Convert a PaddlePaddle Model to OpenVINO™ IR
22
============================================
33

4-
.. _top:
4+
55

66
This notebook shows how to convert a MobileNetV3 model from
77
`PaddleHub <https://github.com/PaddlePaddle/PaddleHub>`__, pre-trained
@@ -16,6 +16,10 @@ IR model.
1616
Source of the
1717
`model <https://www.paddlepaddle.org.cn/hubdetail?name=mobilenet_v3_large_imagenet_ssld&en_category=ImageClassification>`__.
1818

19+
20+
21+
.. _top:
22+
1923
**Table of contents**:
2024

2125
- `Preparation <#preparation>`__

docs/notebooks/104-model-tools-with-output.rst

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,15 @@
11
Working with Open Model Zoo Models
22
==================================
33

4-
.. _top:
4+
55

66
This tutorial shows how to download a model from `Open Model
77
Zoo <https://github.com/openvinotoolkit/open_model_zoo>`__, convert it
88
to OpenVINO™ IR format, show information about the model, and benchmark
99
the model.
1010

11+
.. _top:
12+
1113
**Table of contents**:
1214

1315
- `OpenVINO and Open Model Zoo Tools <#openvino-and-open-model-zoo-tools>`__

docs/notebooks/105-language-quantize-bert-with-output.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Quantize NLP models with Post-Training Quantization ​in NNCF
22
============================================================
33

4-
.. _top:
4+
55

66
This tutorial demonstrates how to apply ``INT8`` quantization to the
77
Natural Language Processing model known as
@@ -24,6 +24,10 @@ and datasets. It consists of the following steps:
2424
- Compare the performance of the original, converted and quantized
2525
models.
2626

27+
28+
29+
.. _top:
30+
2731
**Table of contents**:
2832

2933
- `Imports <#imports>`__

docs/notebooks/106-auto-device-with-output.rst

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,6 @@
11
Automatic Device Selection with OpenVINO™
22
=========================================
33

4-
.. _top:
5-
64
The `Auto
75
device <https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_supported_plugins_AUTO.html>`__
86
(or AUTO in short) selects the most suitable device for inference by
@@ -32,6 +30,10 @@ first inference.
3230

3331
auto
3432

33+
34+
35+
.. _top:
36+
3537
**Table of contents**:
3638

3739
- `Import modules and create Core <#import-modules-and-create-core>`__

0 commit comments

Comments
 (0)