|
2 | 2 |
|
3 | 3 | from pytensor import tensor as pt |
4 | 4 |
|
| 5 | +from pymc_extras.statespace.core.properties import ( |
| 6 | + Coord, |
| 7 | + CoordInfo, |
| 8 | + Data, |
| 9 | + DataInfo, |
| 10 | + Parameter, |
| 11 | + ParameterInfo, |
| 12 | + Shock, |
| 13 | + ShockInfo, |
| 14 | + State, |
| 15 | + StateInfo, |
| 16 | +) |
5 | 17 | from pymc_extras.statespace.models.structural.core import Component |
6 | 18 | from pymc_extras.statespace.utils.constants import TIME_DIM |
7 | 19 |
|
@@ -194,64 +206,110 @@ def make_symbolic_graph(self) -> None: |
194 | 206 | row_idx, col_idx = np.diag_indices(self.k_states) |
195 | 207 | self.ssm["state_cov", row_idx, col_idx] = sigma_beta.ravel() ** 2 |
196 | 208 |
|
197 | | - def populate_component_properties(self) -> None: |
| 209 | + def _set_parameters(self) -> None: |
198 | 210 | k_endog = self.k_endog |
199 | 211 | k_endog_effective = 1 if self.share_states else k_endog |
| 212 | + k_states = self.k_states // k_endog_effective |
| 213 | + |
| 214 | + beta_param_name = f"beta_{self.name}" |
| 215 | + beta_param_shape = (k_endog_effective, k_states) if k_endog_effective > 1 else (k_states,) |
| 216 | + beta_param_dims = ( |
| 217 | + (f"endog_{self.name}", f"state_{self.name}") |
| 218 | + if k_endog_effective > 1 |
| 219 | + else (f"state_{self.name}",) |
| 220 | + ) |
| 221 | + |
| 222 | + beta_param_constraints = None |
| 223 | + beta_parameter = Parameter( |
| 224 | + name=beta_param_name, |
| 225 | + shape=beta_param_shape, |
| 226 | + dims=beta_param_dims, |
| 227 | + constraints=beta_param_constraints, |
| 228 | + ) |
200 | 229 |
|
| 230 | + if self.innovations: |
| 231 | + sigma_param_name = f"sigma_beta_{self.name}" |
| 232 | + sigma_param_dims = (f"state_{self.name}",) |
| 233 | + sigma_param_shape = (k_states,) |
| 234 | + sigma_param_constraints = "Positive" |
| 235 | + |
| 236 | + sigma_parameter = Parameter( |
| 237 | + name=sigma_param_name, |
| 238 | + shape=sigma_param_shape, |
| 239 | + dims=sigma_param_dims, |
| 240 | + constraints=sigma_param_constraints, |
| 241 | + ) |
| 242 | + |
| 243 | + self.param_info = ParameterInfo(parameters=[beta_parameter, sigma_parameter]) |
| 244 | + self.param_names = self.param_info.names |
| 245 | + else: |
| 246 | + self.param_info = ParameterInfo(parameters=[beta_parameter]) |
| 247 | + self.param_names = self.param_info.names |
| 248 | + |
| 249 | + def _set_data(self) -> None: |
| 250 | + k_endog = self.k_endog |
| 251 | + k_endog_effective = 1 if self.share_states else k_endog |
201 | 252 | k_states = self.k_states // k_endog_effective |
202 | 253 |
|
| 254 | + data_name = f"data_{self.name}" |
| 255 | + data_shape = (None, k_states) |
| 256 | + data_dims = (TIME_DIM, f"state_{self.name}") |
| 257 | + |
| 258 | + data_prop = Data(name=data_name, shape=data_shape, dims=data_dims, is_exogenous=True) |
| 259 | + self.data_info = DataInfo(data=[data_prop]) |
| 260 | + self.data_names = self.data_info.names |
| 261 | + |
| 262 | + def _set_shocks(self) -> None: |
203 | 263 | if self.share_states: |
204 | | - self.shock_names = [f"{state_name}_shared" for state_name in self.state_names] |
| 264 | + shock_names = [f"{state_name}_shared" for state_name in self.state_names] |
205 | 265 | else: |
206 | | - self.shock_names = self.state_names |
| 266 | + shock_names = self.state_names |
207 | 267 |
|
208 | | - self.param_names = [f"beta_{self.name}"] |
209 | | - self.data_names = [f"data_{self.name}"] |
210 | | - self.param_dims = { |
211 | | - f"beta_{self.name}": (f"endog_{self.name}", f"state_{self.name}") |
212 | | - if k_endog_effective > 1 |
213 | | - else (f"state_{self.name}",) |
214 | | - } |
| 268 | + self.shock_info = ShockInfo(shocks=[Shock(name=name) for name in shock_names]) |
| 269 | + self.shock_names = self.shock_info.names |
215 | 270 |
|
216 | | - base_names = self.state_names |
| 271 | + def _set_states(self) -> None: |
| 272 | + self.base_names = self.state_names |
217 | 273 |
|
218 | 274 | if self.share_states: |
219 | | - self.state_names = [f"{name}[{self.name}_shared]" for name in base_names] |
| 275 | + state_names = [f"{name}[{self.name}_shared]" for name in self.base_names] |
| 276 | + self.state_info = StateInfo( |
| 277 | + states=[State(name=name, observed=True, shared=True) for name in state_names] |
| 278 | + ) |
| 279 | + self.state_names = self.state_info.names |
220 | 280 | else: |
221 | | - self.state_names = [ |
| 281 | + state_names = [ |
222 | 282 | f"{name}[{obs_name}]" |
223 | 283 | for obs_name in self.observed_state_names |
224 | | - for name in base_names |
| 284 | + for name in self.base_names |
225 | 285 | ] |
| 286 | + self.state_info = StateInfo( |
| 287 | + states=[State(name=name, observed=True, shared=False) for name in state_names] |
| 288 | + ) |
| 289 | + self.state_names = self.state_info.names |
226 | 290 |
|
227 | | - self.param_info = { |
228 | | - f"beta_{self.name}": { |
229 | | - "shape": (k_endog_effective, k_states) if k_endog_effective > 1 else (k_states,), |
230 | | - "constraints": None, |
231 | | - "dims": (f"endog_{self.name}", f"state_{self.name}") |
232 | | - if k_endog_effective > 1 |
233 | | - else (f"state_{self.name}",), |
234 | | - }, |
235 | | - } |
236 | | - |
237 | | - self.data_info = { |
238 | | - f"data_{self.name}": { |
239 | | - "shape": (None, k_states), |
240 | | - "dims": (TIME_DIM, f"state_{self.name}"), |
241 | | - }, |
242 | | - } |
243 | | - self.coords = { |
244 | | - f"state_{self.name}": base_names, |
245 | | - f"endog_{self.name}": self.observed_state_names, |
246 | | - } |
| 291 | + def _set_coords(self) -> None: |
| 292 | + regression_state_coord = Coord( |
| 293 | + dimension=f"state_{self.name}", labels=[state for state in self.base_names] |
| 294 | + ) |
| 295 | + endogenous_state_coord = Coord( |
| 296 | + dimension=f"endog_{self.name}", labels=[state for state in self.observed_state_names] |
| 297 | + ) |
247 | 298 |
|
248 | | - if self.innovations: |
249 | | - self.param_names += [f"sigma_beta_{self.name}"] |
250 | | - self.param_dims[f"sigma_beta_{self.name}"] = (f"state_{self.name}",) |
251 | | - self.param_info[f"sigma_beta_{self.name}"] = { |
252 | | - "shape": (k_states,), |
253 | | - "constraints": "Positive", |
254 | | - "dims": (f"state_{self.name}",) |
255 | | - if k_endog_effective == 1 |
256 | | - else (f"endog_{self.name}", f"state_{self.name}"), |
257 | | - } |
| 299 | + self.coords = CoordInfo(coords=[regression_state_coord, endogenous_state_coord]) |
| 300 | + |
| 301 | + def populate_component_properties(self) -> None: |
| 302 | + # Set parameter info |
| 303 | + self._set_parameters() |
| 304 | + |
| 305 | + # Set data info |
| 306 | + self._set_data() |
| 307 | + |
| 308 | + # Set shock info |
| 309 | + self._set_shocks() |
| 310 | + |
| 311 | + # Set states info |
| 312 | + self._set_states() |
| 313 | + |
| 314 | + # Set coordinates info |
| 315 | + self._set_coords() |
0 commit comments