Skip to content

Commit eb9f13d

Browse files
renames HybridQuery in docs
1 parent e03ae4d commit eb9f13d

File tree

1 file changed

+17
-17
lines changed

1 file changed

+17
-17
lines changed

docs/user_guide/11_advanced_queries.ipynb

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
"In this notebook, we will explore advanced query types available in RedisVL:\n",
1010
"\n",
1111
"1. **`TextQuery`**: Full text search with advanced scoring\n",
12-
"2. **`HybridQuery`**: Combines text and vector search for hybrid retrieval\n",
12+
"2. **`AggregateHybridQuery`**: Combines text and vector search for hybrid retrieval\n",
1313
"3. **`MultiVectorQuery`**: Search over multiple vector fields simultaneously\n",
1414
"\n",
1515
"These query types are powerful tools for building sophisticated search applications that go beyond simple vector similarity search.\n",
@@ -550,9 +550,9 @@
550550
"cell_type": "markdown",
551551
"metadata": {},
552552
"source": [
553-
"## 2. HybridQuery: Combining Text and Vector Search\n",
553+
"## 2. AggregateHybridQuery: Combining Text and Vector Search\n",
554554
"\n",
555-
"The `HybridQuery` combines text search and vector similarity to provide the best of both worlds:\n",
555+
"The `AggregateHybridQuery` combines text search and vector similarity to provide the best of both worlds:\n",
556556
"- **Text search**: Finds exact keyword matches\n",
557557
"- **Vector search**: Captures semantic similarity\n",
558558
"\n",
@@ -569,7 +569,7 @@
569569
"cell_type": "markdown",
570570
"metadata": {},
571571
"source": [
572-
"### Basic Hybrid Query\n",
572+
"### Basic Aggregate Hybrid Query\n",
573573
"\n",
574574
"Let's search for \"running\" with both text and semantic search:"
575575
]
@@ -593,10 +593,10 @@
593593
}
594594
],
595595
"source": [
596-
"from redisvl.query import HybridQuery\n",
596+
"from redisvl.query import AggregateHybridQuery\n",
597597
"\n",
598598
"# Create a hybrid query\n",
599-
"hybrid_query = HybridQuery(\n",
599+
"hybrid_query = AggregateHybridQuery(\n",
600600
" text=\"running shoes\",\n",
601601
" text_field_name=\"brief_description\",\n",
602602
" vector=[0.1, 0.2, 0.1], # Query vector\n",
@@ -648,7 +648,7 @@
648648
],
649649
"source": [
650650
"# More emphasis on vector search (alpha=0.9)\n",
651-
"vector_heavy_query = HybridQuery(\n",
651+
"vector_heavy_query = AggregateHybridQuery(\n",
652652
" text=\"comfortable\",\n",
653653
" text_field_name=\"brief_description\",\n",
654654
" vector=[0.15, 0.25, 0.15],\n",
@@ -667,7 +667,7 @@
667667
"cell_type": "markdown",
668668
"metadata": {},
669669
"source": [
670-
"### Hybrid Query with Filters\n",
670+
"### Aggregate Hybrid Query with Filters\n",
671671
"\n",
672672
"You can also combine hybrid search with filters:"
673673
]
@@ -692,7 +692,7 @@
692692
],
693693
"source": [
694694
"# Hybrid search with a price filter\n",
695-
"filtered_hybrid_query = HybridQuery(\n",
695+
"filtered_hybrid_query = AggregateHybridQuery(\n",
696696
" text=\"professional equipment\",\n",
697697
" text_field_name=\"brief_description\",\n",
698698
" vector=[0.9, 0.1, 0.05],\n",
@@ -712,7 +712,7 @@
712712
"source": [
713713
"### Using Different Text Scorers\n",
714714
"\n",
715-
"HybridQuery supports the same text scoring algorithms as TextQuery:"
715+
"AggregateHybridQuery supports the same text scoring algorithms as TextQuery:"
716716
]
717717
},
718718
{
@@ -734,8 +734,8 @@
734734
}
735735
],
736736
"source": [
737-
"# Hybrid query with TFIDF scorer\n",
738-
"hybrid_tfidf = HybridQuery(\n",
737+
"# Aggregate Hybrid query with TFIDF scorer\n",
738+
"hybrid_tfidf = AggregateHybridQuery(\n",
739739
" text=\"shoes support\",\n",
740740
" text_field_name=\"brief_description\",\n",
741741
" vector=[0.12, 0.18, 0.12],\n",
@@ -999,7 +999,7 @@
999999
"name": "stdout",
10001000
"output_type": "stream",
10011001
"text": [
1002-
"HybridQuery Results (text + vector):\n"
1002+
"AggregateHybridQuery Results (text + vector):\n"
10031003
]
10041004
},
10051005
{
@@ -1023,8 +1023,8 @@
10231023
}
10241024
],
10251025
"source": [
1026-
"# HybridQuery - combines text and vector search\n",
1027-
"hybrid_q = HybridQuery(\n",
1026+
"# AggregateHybridQuery - combines text and vector search\n",
1027+
"hybrid_q = AggregateHybridQuery(\n",
10281028
" text=\"shoes\",\n",
10291029
" text_field_name=\"brief_description\",\n",
10301030
" vector=[0.1, 0.2, 0.1],\n",
@@ -1033,7 +1033,7 @@
10331033
" num_results=3\n",
10341034
")\n",
10351035
"\n",
1036-
"print(\"HybridQuery Results (text + vector):\")\n",
1036+
"print(\"AggregateHybridQuery Results (text + vector):\")\n",
10371037
"result_print(index.query(hybrid_q))\n",
10381038
"print()"
10391039
]
@@ -1103,7 +1103,7 @@
11031103
" - When text relevance scoring is important\n",
11041104
" - Example: Product search, document retrieval\n",
11051105
"\n",
1106-
"2. **`HybridQuery`**:\n",
1106+
"2. **`AggregateHybridQuery`**:\n",
11071107
" - When you want to combine keyword and semantic search\n",
11081108
" - For improved search quality over pure text or vector search\n",
11091109
" - When you have both text and vector representations of your data\n",

0 commit comments

Comments
 (0)