|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | +from sklearn.datasets import make_regression |
| 6 | +from sklearn.linear_model import LinearRegression |
| 7 | +from sklearn.ensemble import RandomForestRegressor |
| 8 | + |
| 9 | +from mapie_v1.regression import ( |
| 10 | + SplitConformalRegressor, |
| 11 | + CrossConformalRegressor, |
| 12 | + JackknifeAfterBootstrapRegressor, |
| 13 | + ConformalizedQuantileRegressor |
| 14 | +) |
| 15 | +from mapiev0.regression import MapieRegressor as MapieRegressorV0 # noqa |
| 16 | +from mapiev0.regression import MapieQuantileRegressor as MapieQuantileRegressorV0 # noqa |
| 17 | +from mapie_v1.conformity_scores.utils import \ |
| 18 | + check_and_select_split_conformity_score |
| 19 | +from mapie_v1.integration_tests.utils import (filter_params, |
| 20 | + train_test_split_shuffle) |
| 21 | +from sklearn.model_selection import KFold |
| 22 | + |
| 23 | +RANDOM_STATE = 1 |
| 24 | +K_FOLDS = 3 |
| 25 | +N_BOOTSTRAPS = 30 |
| 26 | + |
| 27 | +X_toy = np.array([0, 1, 2, 3, 4, 5]).reshape(-1, 1) |
| 28 | +y_toy = np.array([5, 7, 9, 11, 13, 15]) |
| 29 | +X, y = make_regression(n_samples=500, |
| 30 | + n_features=10, |
| 31 | + noise=1.0, |
| 32 | + random_state=RANDOM_STATE) |
| 33 | + |
| 34 | + |
| 35 | +@pytest.mark.parametrize("strategy_key", ["split", "prefit"]) |
| 36 | +@pytest.mark.parametrize("method", ["base", "plus", "minmax"]) |
| 37 | +@pytest.mark.parametrize("conformity_score", ["absolute"]) |
| 38 | +@pytest.mark.parametrize("confidence_level", [0.9, 0.95, 0.99]) |
| 39 | +@pytest.mark.parametrize("agg_function", ["mean", "median"]) |
| 40 | +@pytest.mark.parametrize("allow_infinite_bounds", [True, False]) |
| 41 | +@pytest.mark.parametrize( |
| 42 | + "estimator", [ |
| 43 | + LinearRegression(), |
| 44 | + RandomForestRegressor(random_state=RANDOM_STATE, max_depth=2)]) |
| 45 | +@pytest.mark.parametrize("test_size", [0.2, 0.5]) |
| 46 | +def test_exact_interval_equality_split( |
| 47 | + strategy_key, |
| 48 | + method, |
| 49 | + conformity_score, |
| 50 | + confidence_level, |
| 51 | + agg_function, |
| 52 | + allow_infinite_bounds, |
| 53 | + estimator, |
| 54 | + test_size |
| 55 | +): |
| 56 | + """ |
| 57 | + Test that the prediction intervals are exactly the same |
| 58 | + between v0 and v1 models when using the same settings. |
| 59 | + """ |
| 60 | + |
| 61 | + X_train, X_conf, y_train, y_conf = train_test_split_shuffle( |
| 62 | + X, y, test_size=test_size, random_state=RANDOM_STATE |
| 63 | + ) |
| 64 | + |
| 65 | + if strategy_key == "prefit": |
| 66 | + estimator.fit(X_train, y_train) |
| 67 | + |
| 68 | + v0_params = { |
| 69 | + "estimator": estimator, |
| 70 | + "method": method, |
| 71 | + "conformity_score": check_and_select_split_conformity_score( |
| 72 | + conformity_score |
| 73 | + ), |
| 74 | + "alpha": 1 - confidence_level, |
| 75 | + "agg_function": agg_function, |
| 76 | + "random_state": RANDOM_STATE, |
| 77 | + "test_size": test_size, |
| 78 | + "allow_infinite_bounds": allow_infinite_bounds |
| 79 | + } |
| 80 | + v1_params = { |
| 81 | + "estimator": estimator, |
| 82 | + "method": method, |
| 83 | + "conformity_score": conformity_score, |
| 84 | + "confidence_level": confidence_level, |
| 85 | + "aggregate_function": agg_function, |
| 86 | + "random_state": RANDOM_STATE, |
| 87 | + "n_bootstraps": N_BOOTSTRAPS, |
| 88 | + "allow_infinite_bounds": allow_infinite_bounds |
| 89 | + } |
| 90 | + |
| 91 | + v0, v1 = initialize_models( |
| 92 | + strategy_key=strategy_key, |
| 93 | + v0_params=v0_params, |
| 94 | + v1_params=v1_params, |
| 95 | + k_folds=K_FOLDS, |
| 96 | + random_state=RANDOM_STATE |
| 97 | + ) |
| 98 | + |
| 99 | + if strategy_key == 'prefit': |
| 100 | + v0.fit(X_conf, y_conf) |
| 101 | + else: |
| 102 | + v0.fit(X, y) |
| 103 | + v1.fit(X_train, y_train) |
| 104 | + |
| 105 | + v1.conformalize(X_conf, y_conf) |
| 106 | + |
| 107 | + v0_predict_params = filter_params(v0.predict, v0_params) |
| 108 | + v1_predict_params = filter_params(v1.predict, v1_params) |
| 109 | + _, v0_pred_intervals = v0.predict(X_conf, **v0_predict_params) |
| 110 | + v1_pred_intervals = v1.predict_set(X_conf, **v1_predict_params) |
| 111 | + v0_pred_intervals = v0_pred_intervals[:, :, 0] |
| 112 | + |
| 113 | + np.testing.assert_array_equal( |
| 114 | + v1_pred_intervals, |
| 115 | + v0_pred_intervals, |
| 116 | + err_msg="Prediction intervals differ between v0 and v1 models" |
| 117 | + ) |
| 118 | + |
| 119 | + |
| 120 | +def initialize_models( |
| 121 | + strategy_key, |
| 122 | + v0_params: dict, |
| 123 | + v1_params: dict, |
| 124 | + k_folds=5, |
| 125 | + random_state=42 |
| 126 | +): |
| 127 | + |
| 128 | + if strategy_key == "prefit": |
| 129 | + v0_params.update({"cv": "prefit"}) |
| 130 | + v0_params = filter_params(MapieRegressorV0.__init__, v0_params) |
| 131 | + v1_params = filter_params(SplitConformalRegressor.__init__, v1_params) |
| 132 | + v0 = MapieRegressorV0(**v0_params) |
| 133 | + v1 = SplitConformalRegressor(prefit=True, **v1_params) |
| 134 | + |
| 135 | + elif strategy_key == "split": |
| 136 | + v0_params.update({"cv": "split"}) |
| 137 | + v0_params = filter_params(MapieRegressorV0.__init__, v0_params) |
| 138 | + v1_params = filter_params(SplitConformalRegressor.__init__, v1_params) |
| 139 | + v0 = MapieRegressorV0(**v0_params) |
| 140 | + v1 = SplitConformalRegressor(**v1_params) |
| 141 | + |
| 142 | + elif strategy_key == "cv": |
| 143 | + v0_params.update({"cv": KFold(n_splits=k_folds, |
| 144 | + shuffle=True, |
| 145 | + random_state=random_state)}) |
| 146 | + v0_params = filter_params(MapieRegressorV0.__init__, v0_params) |
| 147 | + v1_params = filter_params(CrossConformalRegressor.__init__, v1_params) |
| 148 | + v0 = MapieRegressorV0(**v0_params) |
| 149 | + v1 = CrossConformalRegressor(cv=k_folds, **v1_params) |
| 150 | + |
| 151 | + elif strategy_key == "jackknife": |
| 152 | + v0_params.update({"cv": -1}) |
| 153 | + v0_params = filter_params(MapieRegressorV0.__init__, v0_params) |
| 154 | + v1_params = filter_params(JackknifeAfterBootstrapRegressor.__init__, |
| 155 | + v1_params) |
| 156 | + v0 = MapieRegressorV0(**v0_params) |
| 157 | + v1 = JackknifeAfterBootstrapRegressor(**v1_params) |
| 158 | + |
| 159 | + elif strategy_key == "CQR": |
| 160 | + v0_params = filter_params(MapieQuantileRegressorV0.__init__, v0_params) |
| 161 | + v1_params = filter_params(SplitConformalRegressor.__init__, v1_params) |
| 162 | + v0 = MapieQuantileRegressorV0(**v0_params) |
| 163 | + v1 = ConformalizedQuantileRegressor(**v1_params) |
| 164 | + |
| 165 | + else: |
| 166 | + raise ValueError(f"Unknown strategy key: {strategy_key}") |
| 167 | + |
| 168 | + return v0, v1 |
0 commit comments