@@ -567,16 +567,19 @@ class JackknifeAfterBootstrapRegressor:
567567 be provided.
568568
569569 method : str, default="plus"
570- The method used for jackknife-after-bootstrap prediction. Options are:
571- - "base": Based on the conformity scores from each bootstrap sample.
572- - "plus": Based on the conformity scores from each bootstrap sample and
573- the testing prediction.
574- - "minmax": Based on the minimum and maximum conformity scores from
575- each bootstrap sample.
570+ Jackknife-after-bootstrap method for prediction intervals:
571+ - "plus": Combines bootstrap conformity scores with test predictions.
572+ - "minmax": Minimum and maximum conformity scores from bootstrap samples.
576573
577- n_bootstraps : int, default=100
578- The number of bootstrap resamples to generate for the
579- jackknife-after-bootstrap procedure.
574+ Note: The "base" method is not authorized and should not be used.
575+
576+ resampling : Union[int, Subsample], default=30
577+ Number of bootstrap resamples or an instance of `Subsample` for
578+ custom resampling strategy.
579+
580+ aggregation_method : str, default="mean"
581+ Aggregation method for predictions across bootstrap samples.
582+ Options: ["mean", "median"].
580583
581584 n_jobs : Optional[int], default=None
582585 The number of jobs to run in parallel when applicable.
@@ -763,14 +766,18 @@ def predict_set(
763766 X : ArrayLike
764767 Test data for prediction intervals.
765768
769+ minimize_interval_width : bool, default=False
770+ If True, minimizes the width of prediction intervals while
771+ maintaining coverage.
772+
766773 allow_infinite_bounds : bool, default=False
767774 If True, allows intervals to include infinite bounds
768775 if required for coverage.
769776
770777 Returns
771778 -------
772779 NDArray
773- Prediction intervals of shape ` (n_samples, 2)` ,
780+ Prediction intervals of shape (n_samples, 2),
774781 with lower and upper bounds for each sample.
775782 """
776783 _ , intervals = self ._mapie_regressor .predict (
0 commit comments