Skip to content

Commit 530ead7

Browse files
ENH: rename regression_coverage_score_v2 to regression_coverage_score (#640)
* ENH: rename regression_coverage_score_v2 to regression_coverage_score * FIX: fix lint error in mapie/metrics/regression.py (line 206)
1 parent 72efca1 commit 530ead7

26 files changed

+95
-96
lines changed

doc/api.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ Regression Metrics
9292
:toctree: generated/
9393
:template: function.rst
9494

95-
mapie.metrics.regression.regression_coverage_score_v2
95+
mapie.metrics.regression.regression_coverage_score
9696
mapie.metrics.regression.regression_mean_width_score
9797
mapie.metrics.regression.regression_ssc
9898
mapie.metrics.regression.regression_ssc_score

doc/quick_start.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -69,9 +69,9 @@ Here, we generate one-dimensional noisy data that we fit with a linear model.
6969

7070
# You can compute the coverage of your prediction intervals.
7171

72-
from mapie.metrics.regression import regression_coverage_score_v2
72+
from mapie.metrics.regression import regression_coverage_score
7373

74-
coverage_scores = regression_coverage_score_v2(y_test, y_pred_intervals)
74+
coverage_scores = regression_coverage_score(y_test, y_pred_intervals)
7575

7676
# The estimated prediction intervals can then be plotted as follows.
7777

examples/mondrian/1-quickstart/plot_main-tutorial-mondrian-regression.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
from sklearn.model_selection import train_test_split
2727
from sklearn.ensemble import RandomForestRegressor
2828

29-
from mapie.metrics.regression import regression_coverage_score_v2
29+
from mapie.metrics.regression import regression_coverage_score
3030
from mapie.mondrian import MondrianCP
3131
from mapie.regression import MapieRegressor
3232

@@ -152,10 +152,10 @@
152152
coverages = {}
153153
for group in np.unique(partition_test):
154154
coverages[group] = {}
155-
coverages[group]["split"] = regression_coverage_score_v2(
155+
coverages[group]["split"] = regression_coverage_score(
156156
y_test[partition_test == group], y_pss_split[partition_test == group]
157157
)
158-
coverages[group]["mondrian"] = regression_coverage_score_v2(
158+
coverages[group]["mondrian"] = regression_coverage_score(
159159
y_test[partition_test == group],
160160
y_pss_mondrian[partition_test == group]
161161
)

examples/regression/1-quickstart/plot_compare_conformity_scores.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@
4242
from sklearn.ensemble import RandomForestRegressor
4343
from sklearn.model_selection import train_test_split
4444

45-
from mapie.metrics.regression import regression_coverage_score_v2
45+
from mapie.metrics.regression import regression_coverage_score
4646
from mapie_v1.regression import CrossConformalRegressor
4747

4848
RANDOM_STATE = 42
@@ -111,7 +111,7 @@
111111
X_test
112112
)
113113

114-
coverage_absconfscore = regression_coverage_score_v2(
114+
coverage_absconfscore = regression_coverage_score(
115115
y_test, y_pis_absconfscore
116116
)[0]
117117

@@ -146,7 +146,7 @@ def get_yerr(y_pred, y_pis):
146146
X_test
147147
)
148148

149-
coverage_gammaconfscore = regression_coverage_score_v2(
149+
coverage_gammaconfscore = regression_coverage_score(
150150
y_test, y_pis_gammaconfscore
151151
)[0]
152152

examples/regression/1-quickstart/plot_prefit.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@
2727
from sklearn.neural_network import MLPRegressor
2828

2929
from numpy.typing import NDArray
30-
from mapie.metrics.regression import regression_coverage_score_v2
30+
from mapie.metrics.regression import regression_coverage_score
3131
from mapie_v1.regression import SplitConformalRegressor, ConformalizedQuantileRegressor
3232
from mapie_v1.utils import train_conformalize_test_split
3333

@@ -99,7 +99,7 @@ def f(x: NDArray) -> NDArray:
9999

100100
# Evaluate prediction and coverage level on testing set
101101
y_pred, y_pis = mapie.predict_interval(X_test.reshape(-1, 1))
102-
coverage = regression_coverage_score_v2(y_test, y_pis)[0]
102+
coverage = regression_coverage_score(y_test, y_pis)[0]
103103

104104

105105
##############################################################################
@@ -206,7 +206,7 @@ def f(x: NDArray) -> NDArray:
206206

207207
# Evaluate prediction and coverage level on testing set
208208
y_pred_cqr, y_pis_cqr = mapie_cqr.predict_interval(X_test.reshape(-1, 1))
209-
coverage_cqr = regression_coverage_score_v2(
209+
coverage_cqr = regression_coverage_score(
210210
y_test,
211211
y_pis_cqr
212212
)[0]

examples/regression/1-quickstart/plot_toy_model.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
from matplotlib import pyplot as plt
1010
from sklearn.datasets import make_regression
1111

12-
from mapie.metrics.regression import regression_coverage_score_v2
12+
from mapie.metrics.regression import regression_coverage_score
1313
from mapie_v1.regression import SplitConformalRegressor
1414
from mapie_v1.utils import train_conformalize_test_split
1515

@@ -33,7 +33,7 @@
3333
mapie_regressor.conformalize(X_conformalize, y_conformalize)
3434
y_pred, y_pred_interval = mapie_regressor.predict_interval(X_test)
3535

36-
coverage_scores = regression_coverage_score_v2(y_test, y_pred_interval)
36+
coverage_scores = regression_coverage_score(y_test, y_pred_interval)
3737

3838
plt.xlabel("x")
3939
plt.ylabel("y")

examples/regression/1-quickstart/plot_ts-tutorial.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ class that block bootstraps the training set.
5757
from sklearn.model_selection import RandomizedSearchCV, TimeSeriesSplit
5858

5959
from mapie.metrics.regression import (
60-
regression_coverage_score_v2,
60+
regression_coverage_score,
6161
regression_mean_width_score, coverage_width_based,
6262
)
6363
from mapie.regression import MapieTimeSeriesRegressor
@@ -217,7 +217,7 @@ class that block bootstraps the training set.
217217
allow_infinite_bounds=True
218218
)
219219
y_pis_enbpi_npfit = np.clip(y_pis_enbpi_npfit, 1, 10)
220-
coverage_enbpi_npfit = regression_coverage_score_v2(
220+
coverage_enbpi_npfit = regression_coverage_score(
221221
y_test, y_pis_enbpi_npfit
222222
)[0]
223223
width_enbpi_npfit = regression_mean_width_score(
@@ -258,7 +258,7 @@ class that block bootstraps the training set.
258258
y_pis_aci_npfit[step:step + gap, :, :], 1, 10
259259
)
260260

261-
coverage_aci_npfit = regression_coverage_score_v2(
261+
coverage_aci_npfit = regression_coverage_score(
262262
y_test, y_pis_aci_npfit
263263
)[0]
264264
width_aci_npfit = regression_mean_width_score(
@@ -307,7 +307,7 @@ class that block bootstraps the training set.
307307
y_pis_enbpi_pfit[step:step + gap, :, :] = np.clip(
308308
y_pis_enbpi_pfit[step:step + gap, :, :], 1, 10
309309
)
310-
coverage_enbpi_pfit = regression_coverage_score_v2(
310+
coverage_enbpi_pfit = regression_coverage_score(
311311
y_test, y_pis_enbpi_pfit
312312
)[0]
313313
width_enbpi_pfit = regression_mean_width_score(
@@ -360,7 +360,7 @@ class that block bootstraps the training set.
360360
y_pis_aci_pfit[step:step + gap, :, :], 1, 10
361361
)
362362

363-
coverage_aci_pfit = regression_coverage_score_v2(
363+
coverage_aci_pfit = regression_coverage_score(
364364
y_test, y_pis_aci_pfit
365365
)[0]
366366
width_aci_pfit = regression_mean_width_score(
@@ -462,23 +462,23 @@ class that block bootstraps the training set.
462462

463463
for i in range(window, len(y_test), 1):
464464
rolling_coverage_aci_npfit.append(
465-
regression_coverage_score_v2(
465+
regression_coverage_score(
466466
y_test[i-window:i], y_pis_aci_npfit[i-window:i]
467467
)[0]
468468
)
469469
rolling_coverage_aci_pfit.append(
470-
regression_coverage_score_v2(
470+
regression_coverage_score(
471471
y_test[i-window:i], y_pis_aci_pfit[i-window:i]
472472
)[0]
473473
)
474474

475475
rolling_coverage_enbpi_npfit.append(
476-
regression_coverage_score_v2(
476+
regression_coverage_score(
477477
y_test[i-window:i], y_pis_enbpi_npfit[i-window:i]
478478
)[0]
479479
)
480480
rolling_coverage_enbpi_pfit.append(
481-
regression_coverage_score_v2(
481+
regression_coverage_score(
482482
y_test[i-window:i], y_pis_enbpi_pfit[i-window:i]
483483
)[0]
484484
)

examples/regression/2-advanced-analysis/plot-coverage-width-based-criterion.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@
2525
from sklearn.model_selection import train_test_split
2626

2727
from mapie.metrics.regression import (
28-
regression_coverage_score_v2,
28+
regression_coverage_score,
2929
regression_mean_width_score, coverage_width_based,
3030
)
3131
from mapie_v1.regression import (
@@ -260,7 +260,7 @@ def plot_1d_data(
260260
cwc_score = {}
261261

262262
for strategy in STRATEGIES:
263-
coverage_score[strategy] = regression_coverage_score_v2(
263+
coverage_score[strategy] = regression_coverage_score(
264264
y_test,
265265
y_pis[strategy]
266266
)[0]

examples/regression/2-advanced-analysis/plot_ResidualNormalisedScore_tutorial.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222

2323
from mapie.conformity_scores import ResidualNormalisedScore
2424
from mapie.metrics.regression import (
25-
regression_coverage_score_v2,
25+
regression_coverage_score,
2626
regression_ssc_score,
2727
)
2828
from mapie_v1.regression import SplitConformalRegressor
@@ -197,7 +197,7 @@ def predict(self, X):
197197
mapie.fit(X_train, y_train)
198198
mapie.conformalize(X_conformalize, y_conformalize)
199199
y_pred[strategy_name], y_pis[strategy_name] = mapie.predict_interval(X_test)
200-
coverage[strategy_name] = regression_coverage_score_v2(
200+
coverage[strategy_name] = regression_coverage_score(
201201
y_test, y_pis[strategy_name]
202202
)
203203
cond_coverage[strategy_name] = regression_ssc_score(

examples/regression/2-advanced-analysis/plot_conditional_coverage.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
from mapie.conformity_scores import (GammaConformityScore,
3131
ResidualNormalisedScore)
3232
from mapie.metrics.regression import (
33-
regression_coverage_score_v2,
33+
regression_coverage_score,
3434
regression_ssc,
3535
regression_ssc_score, hsic,
3636
)
@@ -162,7 +162,7 @@ def sin_with_controlled_noise(
162162
y_pred[strategy_name], y_pis[strategy_name] = mapie.predict_interval(X_test)
163163

164164
# computing metrics
165-
coverage[strategy_name] = regression_coverage_score_v2(
165+
coverage[strategy_name] = regression_coverage_score(
166166
y_test, y_pis[strategy_name]
167167
)
168168
cond_coverage[strategy_name] = regression_ssc_score(

0 commit comments

Comments
 (0)