@@ -760,7 +760,7 @@ class BinaryClassificationRisk:
760
760
Attributes
761
761
----------
762
762
higher_is_better : bool
763
- See above .
763
+ See params .
764
764
765
765
References
766
766
----------
@@ -803,14 +803,15 @@ def get_value_and_effective_sample_size(
803
803
804
804
Returns
805
805
-------
806
- A tuple containing the value of the risk between 0 and 1,
807
- and the number of effective samples used to compute that value
808
- (between 1 and n_samples).
806
+ Tuple[float, int]
807
+ A tuple containing the value of the risk between 0 and 1,
808
+ and the number of effective samples used to compute that value
809
+ (between 1 and n_samples).
809
810
810
- In the case of a performance metric, this function returns 1 - perf_value.
811
+ In the case of a performance metric, this function returns 1 - perf_value.
811
812
812
- If the risk is not defined (condition never met), the value is set to 1,
813
- and the number of effective samples is set to -1.
813
+ If the risk is not defined (condition never met), the value is set to 1,
814
+ and the number of effective samples is set to -1.
814
815
"""
815
816
risk_occurrences = np .array ([
816
817
self ._risk_occurrence (y_true_i , y_pred_i )
@@ -1066,12 +1067,14 @@ def predict(self, X_test: ArrayLike) -> NDArray:
1066
1067
1067
1068
Returns
1068
1069
-------
1069
- NDArray of shape (n_samples,)
1070
+ NDArray
1071
+ NDArray of shape (n_samples,)
1070
1072
1071
1073
Raises
1072
1074
------
1073
- ValueError if the method .calibrate was not called,
1074
- or if no valid thresholds were found during calibration.
1075
+ ValueError
1076
+ If the method .calibrate was not called,
1077
+ or if no valid thresholds were found during calibration.
1075
1078
"""
1076
1079
if self .best_predict_param is None :
1077
1080
raise ValueError (
0 commit comments