|
| 1 | +""" |
| 2 | +================================================= |
| 3 | +Use MAPIE to control risk for a binary classifier |
| 4 | +================================================= |
| 5 | +
|
| 6 | +In this example, we explain how to do risk control for binary classification with MAPIE. |
| 7 | +
|
| 8 | +""" |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import matplotlib.pyplot as plt |
| 12 | +from sklearn.datasets import make_circles |
| 13 | +from sklearn.svm import SVC |
| 14 | +from sklearn.model_selection import FixedThresholdClassifier |
| 15 | +from sklearn.metrics import precision_score |
| 16 | +from sklearn.inspection import DecisionBoundaryDisplay |
| 17 | + |
| 18 | +from mapie.risk_control import BinaryClassificationController, precision |
| 19 | +from mapie.utils import train_conformalize_test_split |
| 20 | + |
| 21 | +RANDOM_STATE = 1 |
| 22 | + |
| 23 | +############################################################################## |
| 24 | +# Let us first load the dataset and fit an SVC on the training data. |
| 25 | + |
| 26 | +X, y = make_circles(n_samples=3000, noise=0.3, |
| 27 | + factor=0.3, random_state=RANDOM_STATE) |
| 28 | +(X_train, X_calib, X_test, |
| 29 | + y_train, y_calib, y_test) = train_conformalize_test_split( |
| 30 | + X, y, train_size=0.8, conformalize_size=0.1, test_size=0.1, |
| 31 | + random_state=RANDOM_STATE) |
| 32 | + |
| 33 | +clf = SVC(probability=True, random_state=RANDOM_STATE) |
| 34 | +clf.fit(X_train, y_train) |
| 35 | + |
| 36 | +############################################################################## |
| 37 | +# Next, we initialize a :class:`~mapie.risk_control.BinaryClassificationController` |
| 38 | +# using the probability estimation function from the fitted estimator: |
| 39 | +# ``clf.predict_proba``, a risk function (here the precision), a target risk level, and |
| 40 | +# a confidence level. Then we use the calibration data to compute statistically |
| 41 | +# guaranteed thresholds using a risk control method. |
| 42 | + |
| 43 | +target_precision = 0.8 |
| 44 | +bcc = BinaryClassificationController( |
| 45 | + clf.predict_proba, precision, target_level=target_precision, confidence_level=0.9) |
| 46 | +bcc.calibrate(X_calib, y_calib) |
| 47 | + |
| 48 | +print(f'{len(bcc.valid_predict_params)} valid thresholds found. ' |
| 49 | + f'The best one is {bcc.best_predict_param:.3f}.') |
| 50 | + |
| 51 | + |
| 52 | +############################################################################## |
| 53 | +# In the plot below, we visualize how the threshold values impact precision, and what |
| 54 | +# thresholds have been computed as statistically guaranteed. |
| 55 | + |
| 56 | +proba_positive_class = clf.predict_proba(X_calib)[:, 1] |
| 57 | + |
| 58 | +tested_thresholds = bcc._predict_params |
| 59 | +precisions = np.full(len(tested_thresholds), np.inf) |
| 60 | +for i, threshold in enumerate(tested_thresholds): |
| 61 | + y_pred = (proba_positive_class >= threshold).astype(int) |
| 62 | + precisions[i] = precision_score(y_calib, y_pred) |
| 63 | + |
| 64 | +valid_thresholds_indices = np.array( |
| 65 | + [t in bcc.valid_predict_params for t in tested_thresholds]) |
| 66 | +best_threshold_index = np.where( |
| 67 | + tested_thresholds == bcc.best_predict_param)[0][0] |
| 68 | + |
| 69 | +plt.figure() |
| 70 | +plt.scatter(tested_thresholds[valid_thresholds_indices], |
| 71 | + precisions[valid_thresholds_indices], c='tab:green', |
| 72 | + label='Valid thresholds') |
| 73 | +plt.scatter(tested_thresholds[~valid_thresholds_indices], |
| 74 | + precisions[~valid_thresholds_indices], c='tab:red', |
| 75 | + label='Invalid thresholds') |
| 76 | +plt.scatter(tested_thresholds[best_threshold_index], precisions[best_threshold_index], |
| 77 | + c='tab:green', label='Best threshold', marker='*', edgecolors='k', s=300) |
| 78 | +plt.axhline(target_precision, color='tab:gray', linestyle='--') |
| 79 | +plt.text(0, target_precision+0.02, 'Target precision', |
| 80 | + color='tab:gray', fontstyle='italic') |
| 81 | +plt.xlabel('Threshold', labelpad=15) |
| 82 | +plt.ylabel('Precision') |
| 83 | +plt.legend() |
| 84 | +plt.show() |
| 85 | + |
| 86 | +############################################################################## |
| 87 | +# Contrary to the naive way of computing a threshold to satisfy a precision target on |
| 88 | +# calibration data, risk control provides statistical guarantees on unseen data. |
| 89 | +# Besides computing a set of valid thresholds, |
| 90 | +# :class:`~mapie.risk_control.BinaryClassificationController` also outputs the best |
| 91 | +# one, which in the case of precision is the threshold that, among all valid ones, |
| 92 | +# maximizes recall. |
| 93 | +# |
| 94 | +# In the figure above, the highest threshold values are considered invalid due to the |
| 95 | +# small number of observations used to compute the precision, following the Learn then |
| 96 | +# Test procedure. In the most extreme case, no observation is available, which causes |
| 97 | +# the precision value to be ill-defined and set to 0. |
| 98 | +# |
| 99 | +# After obtaining the best threshold, we can use the ``predict`` function of |
| 100 | +# :class:`~mapie.risk_control.BinaryClassificationController` for future predictions, |
| 101 | +# or use scikit-learn's ``FixedThresholdClassifier`` as a wrapper to benefit |
| 102 | +# from functionalities like easily plotting the decision boundary as seen below. |
| 103 | + |
| 104 | +y_pred = bcc.predict(X_test) |
| 105 | + |
| 106 | +clf_threshold = FixedThresholdClassifier(clf, threshold=bcc.best_predict_param) |
| 107 | +# necessary for plotting, alternatively you can use sklearn.frozen.FrozenEstimator |
| 108 | +clf_threshold.fit(X_train, y_train) |
| 109 | + |
| 110 | +disp = DecisionBoundaryDisplay.from_estimator( |
| 111 | + clf_threshold, X_test, response_method="predict", cmap=plt.cm.coolwarm) |
| 112 | + |
| 113 | +plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], |
| 114 | + edgecolors='k', c='tab:blue', alpha=0.5, label='"negative" class') |
| 115 | +plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], |
| 116 | + edgecolors='k', c='tab:red', alpha=0.5, label='"positive" class') |
| 117 | +plt.title("Decision Boundary of FixedThresholdClassifier") |
| 118 | +plt.xlabel("Feature 1") |
| 119 | +plt.ylabel("Feature 2") |
| 120 | +plt.legend() |
| 121 | +plt.show() |
| 122 | + |
| 123 | +############################################################################## |
| 124 | +# Different risk functions have been implemented, such as precision and recall, but you |
| 125 | +# can also implement your own custom function using |
| 126 | +# :class:`~mapie.risk_control.BinaryClassificationRisk`. |
0 commit comments