|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | +===================== |
| 4 | +Calibrating a Classifier |
| 5 | +===================== |
| 6 | +
|
| 7 | +A minimalist example showing how to calibrate a HiClass LCN model. The calibration method can be selected with the :literal:`calibration_method` parameter, for example: |
| 8 | +
|
| 9 | +.. tabs:: |
| 10 | +
|
| 11 | + .. code-tab:: python |
| 12 | + :caption: Isotonic Regression |
| 13 | +
|
| 14 | + rf = RandomForestClassifier() |
| 15 | + classifier = LocalClassifierPerNode( |
| 16 | + local_classifier=rf, |
| 17 | + calibration_method='isotonic' |
| 18 | + ) |
| 19 | +
|
| 20 | + .. code-tab:: python |
| 21 | + :caption: Platt scaling |
| 22 | +
|
| 23 | + rf = RandomForestClassifier() |
| 24 | + classifier = LocalClassifierPerNode( |
| 25 | + local_classifier=rf, |
| 26 | + calibration_method='platt' |
| 27 | + ) |
| 28 | +
|
| 29 | + .. code-tab:: python |
| 30 | + :caption: Beta scaling |
| 31 | +
|
| 32 | + rf = RandomForestClassifier() |
| 33 | + classifier = LocalClassifierPerNode( |
| 34 | + local_classifier=rf, |
| 35 | + calibration_method='beta' |
| 36 | + ) |
| 37 | +
|
| 38 | + .. code-tab:: python |
| 39 | + :caption: IVAP |
| 40 | +
|
| 41 | + rf = RandomForestClassifier() |
| 42 | + classifier = LocalClassifierPerNode( |
| 43 | + local_classifier=rf, |
| 44 | + calibration_method='ivap' |
| 45 | + ) |
| 46 | +
|
| 47 | + .. code-tab:: python |
| 48 | + :caption: CVAP |
| 49 | +
|
| 50 | + rf = RandomForestClassifier() |
| 51 | + classifier = LocalClassifierPerNode( |
| 52 | + local_classifier=rf, |
| 53 | + calibration_method='cvap' |
| 54 | + ) |
| 55 | +
|
| 56 | +Furthermore, probabilites of multiple levels can be aggregated by defining a probability combiner: |
| 57 | +
|
| 58 | +.. tabs:: |
| 59 | +
|
| 60 | + .. code-tab:: python |
| 61 | + :caption: Multiply (Default) |
| 62 | +
|
| 63 | + rf = RandomForestClassifier() |
| 64 | + classifier = LocalClassifierPerNode( |
| 65 | + local_classifier=rf, |
| 66 | + calibration_method='isotonic', |
| 67 | + probability_combiner='multiply' |
| 68 | + ) |
| 69 | +
|
| 70 | + .. code-tab:: python |
| 71 | + :caption: Geometric Mean |
| 72 | +
|
| 73 | + rf = RandomForestClassifier() |
| 74 | + classifier = LocalClassifierPerNode( |
| 75 | + local_classifier=rf, |
| 76 | + calibration_method='isotonic', |
| 77 | + probability_combiner='geometric' |
| 78 | + ) |
| 79 | +
|
| 80 | + .. code-tab:: python |
| 81 | + :caption: Arithmetic Mean |
| 82 | +
|
| 83 | + rf = RandomForestClassifier() |
| 84 | + classifier = LocalClassifierPerNode( |
| 85 | + local_classifier=rf, |
| 86 | + calibration_method='isotonic', |
| 87 | + probability_combiner='arithmetic' |
| 88 | + ) |
| 89 | +
|
| 90 | + .. code-tab:: python |
| 91 | + :caption: No Aggregation |
| 92 | +
|
| 93 | + rf = RandomForestClassifier() |
| 94 | + classifier = LocalClassifierPerNode( |
| 95 | + local_classifier=rf, |
| 96 | + calibration_method='isotonic', |
| 97 | + probability_combiner=None |
| 98 | + ) |
| 99 | +
|
| 100 | +
|
| 101 | +A hierarchical classifier can be calibrated by calling calibrate on the model or by using a Pipeline: |
| 102 | +
|
| 103 | +.. tabs:: |
| 104 | +
|
| 105 | + .. code-tab:: python |
| 106 | + :caption: Default |
| 107 | +
|
| 108 | + rf = RandomForestClassifier() |
| 109 | + classifier = LocalClassifierPerNode( |
| 110 | + local_classifier=rf, |
| 111 | + calibration_method='isotonic' |
| 112 | + ) |
| 113 | +
|
| 114 | + classifier.fit(X_train, Y_train) |
| 115 | + classifier.calibrate(X_cal, Y_cal) |
| 116 | + classifier.predict_proba(X_test) |
| 117 | +
|
| 118 | + .. code-tab:: python |
| 119 | + :caption: Pipeline |
| 120 | +
|
| 121 | + from hiclass import Pipeline |
| 122 | +
|
| 123 | + rf = RandomForestClassifier() |
| 124 | + classifier = LocalClassifierPerNode( |
| 125 | + local_classifier=rf, |
| 126 | + calibration_method='isotonic' |
| 127 | + ) |
| 128 | +
|
| 129 | + pipeline = Pipeline([ |
| 130 | + ('classifier', classifier), |
| 131 | + ]) |
| 132 | +
|
| 133 | + pipeline.fit(X_train, Y_train) |
| 134 | + pipeline.calibrate(X_cal, Y_cal) |
| 135 | + pipeline.predict_proba(X_test) |
| 136 | +
|
| 137 | +In the code below, isotonic regression is used to calibrate the model. |
| 138 | +
|
| 139 | +""" |
| 140 | +from sklearn.ensemble import RandomForestClassifier |
| 141 | + |
| 142 | +from hiclass import LocalClassifierPerNode |
| 143 | + |
| 144 | +# Define data |
| 145 | +X_train = [[1], [2], [3], [4]] |
| 146 | +X_test = [[4], [3], [2], [1]] |
| 147 | +X_cal = [[5], [6], [7], [8]] |
| 148 | +Y_train = [ |
| 149 | + ["Animal", "Mammal", "Sheep"], |
| 150 | + ["Animal", "Mammal", "Cow"], |
| 151 | + ["Animal", "Reptile", "Snake"], |
| 152 | + ["Animal", "Reptile", "Lizard"], |
| 153 | +] |
| 154 | + |
| 155 | +Y_cal = [ |
| 156 | + ["Animal", "Mammal", "Cow"], |
| 157 | + ["Animal", "Mammal", "Sheep"], |
| 158 | + ["Animal", "Reptile", "Lizard"], |
| 159 | + ["Animal", "Reptile", "Snake"], |
| 160 | +] |
| 161 | + |
| 162 | +# Use random forest classifiers for every node |
| 163 | +rf = RandomForestClassifier() |
| 164 | + |
| 165 | +# Use local classifier per node with isotonic regression as calibration method |
| 166 | +classifier = LocalClassifierPerNode( |
| 167 | + local_classifier=rf, calibration_method="isotonic", probability_combiner="multiply" |
| 168 | +) |
| 169 | + |
| 170 | +# Train local classifier per node |
| 171 | +classifier.fit(X_train, Y_train) |
| 172 | + |
| 173 | +# Calibrate local classifier per node |
| 174 | +classifier.calibrate(X_cal, Y_cal) |
| 175 | + |
| 176 | +# Predict probabilities |
| 177 | +probabilities = classifier.predict_proba(X_test) |
| 178 | + |
| 179 | +# Print probabilities and labels for the last level |
| 180 | +print(classifier.classes_[2]) |
| 181 | +print(probabilities) |
0 commit comments