@@ -88,7 +88,7 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
88
88
range [0.0, infinity).
89
89
90
90
space: {'feature', 'sample', 'auto'}, default='auto'
91
- whether to compute the PCovR in `sample` or `feature` space default= `sample`
91
+ whether to compute the PCovR in `sample` or `feature` space. Default = `sample`
92
92
when :math:`{n_{samples} < n_{features}}` and `feature` when
93
93
:math:`{n_{features} < n_{samples}}`
94
94
@@ -126,7 +126,7 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
126
126
Must be of range [0.0, infinity).
127
127
128
128
space: {'feature', 'sample', 'auto'}, default='auto'
129
- whether to compute the PCovR in `sample` or `feature` space default= `sample`
129
+ whether to compute the PCovR in `sample` or `feature` space. Default = `sample`
130
130
when :math:`{n_{samples} < n_{features}}` and `feature` when
131
131
:math:`{n_{features} < n_{samples}}`
132
132
@@ -227,11 +227,12 @@ def fit(self, X, Y, W=None):
227
227
regressed form of the properties, :math:`{\mathbf{\hat{Y}}}`.
228
228
229
229
W : numpy.ndarray, shape (n_features, n_properties)
230
- Regression weights, optional when regressor= `precomputed`. If not
230
+ Regression weights, optional when regressor = `precomputed`. If not
231
231
passed, it is assumed that `W = np.linalg.lstsq(X, Y, self.tol)[0]`
232
232
"""
233
233
X , Y = validate_data (self , X , Y , y_numeric = True , multi_output = True )
234
- super ().fit (X )
234
+
235
+ super ()._set_fit_params (X )
235
236
236
237
compatible_regressors = (LinearRegression , Ridge , RidgeCV )
237
238
@@ -414,7 +415,7 @@ def score(self, X, y, T=None):
414
415
Negative sum of the loss in reconstructing X from the latent-space
415
416
projection T and the loss in predicting Y from the latent-space projection T
416
417
"""
417
- X , y = validate_data (self , X , y , reset = False )
418
+ X , y = validate_data (self , X , y , multi_output = True , reset = False )
418
419
419
420
if T is None :
420
421
T = self .transform (X )
0 commit comments