@@ -88,9 +88,9 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
88
88
range [0.0, infinity).
89
89
90
90
space: {'feature', 'sample', 'auto'}, default='auto'
91
- whether to compute the PCovR in `sample` or `feature` space.
92
- The default is = ` sample` when :math:`{n_{samples} < n_{features}}`
93
- and `feature` when :math:`{n_{features} < n_{samples}}`
91
+ whether to compute the PCovC in `` sample`` or `` feature` ` space.
92
+ The default is equal to `` sample` ` when :math:`{n_{samples} < n_{features}}`
93
+ and `` feature` ` when :math:`{n_{features} < n_{samples}}`
94
94
95
95
regressor: {`Ridge`, `RidgeCV`, `LinearRegression`, `precomputed`}, default=None
96
96
regressor for computing approximated :math:`{\mathbf{\hat{Y}}}`. The regressor
@@ -126,9 +126,9 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
126
126
Must be of range [0.0, infinity).
127
127
128
128
space: {'feature', 'sample', 'auto'}, default='auto'
129
- whether to compute the PCovR in `sample` or `feature` space. Default = `sample`
130
- when :math:`{n_{samples} < n_{features}}` and `feature` when
131
- :math:`{n_{features} < n_{samples}}`
129
+ whether to compute the PCovR in `` sample`` or `` feature`` space.
130
+ The default is equal to ``sample`` when :math:`{n_{samples} < n_{features}}`
131
+ and ``feature`` when :math:`{n_{features} < n_{samples}}`
132
132
133
133
n_components_ : int
134
134
The estimated number of components, which equals the parameter n_components, or
@@ -227,7 +227,7 @@ def fit(self, X, Y, W=None):
227
227
regressed form of the properties, :math:`{\mathbf{\hat{Y}}}`.
228
228
229
229
W : numpy.ndarray, shape (n_features, n_properties)
230
- Regression weights, optional when regressor = ` precomputed`. If not
230
+ Regression weights, optional when regressor is `` precomputed` `. If not
231
231
passed, it is assumed that `W = np.linalg.lstsq(X, Y, self.tol)[0]`
232
232
"""
233
233
X , Y = validate_data (self , X , Y , y_numeric = True , multi_output = True )
0 commit comments