Skip to content

Commit 1f91002

Browse files
committed
More docstring touch-ups
1 parent 91f80b1 commit 1f91002

File tree

2 files changed

+15
-15
lines changed

2 files changed

+15
-15
lines changed

src/skmatter/decomposition/_pcovc.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -97,11 +97,11 @@ class PCovC(LinearClassifierMixin, _BasePCov):
9797
Must be of range [0.0, infinity).
9898
9999
space: {'feature', 'sample', 'auto'}, default='auto'
100-
whether to compute the PCovC in `sample` or `feature` space.
101-
Default = `sample` when :math:`{n_{samples} < n_{features}}` and
102-
`feature` when :math:`{n_{features} < n_{samples}}`
100+
whether to compute the PCovC in ``sample`` or ``feature`` space.
101+
The default is equal to ``sample`` when :math:`{n_{samples} < n_{features}}`
102+
and ``feature`` when :math:`{n_{features} < n_{samples}}`
103103
104-
classifier: `estimator object` or `precomputed`, default=None
104+
classifier: ``estimator object`` or ``precomputed``, default=None
105105
classifier for computing :math:`{\mathbf{Z}}`. The classifier should be
106106
one of the following:
107107
@@ -144,9 +144,9 @@ class PCovC(LinearClassifierMixin, _BasePCov):
144144
Must be of range [0.0, infinity).
145145
146146
space: {'feature', 'sample', 'auto'}, default='auto'
147-
whether to compute the PCovC in `sample` or `feature` space.
148-
The default is = `sample` when :math:`{n_{samples} < n_{features}}`
149-
and `feature` when :math:`{n_{features} < n_{samples}}`
147+
whether to compute the PCovC in ``sample`` or ``feature`` space.
148+
The default is equal to ``sample`` when :math:`{n_{samples} < n_{features}}`
149+
and ``feature`` when :math:`{n_{features} < n_{samples}}`
150150
151151
n_components_ : int
152152
The estimated number of components, which equals the parameter
@@ -254,7 +254,7 @@ def fit(self, X, Y, W=None):
254254
Training data, where n_samples is the number of samples.
255255
256256
W : numpy.ndarray, shape (n_features, n_classes)
257-
Classification weights, optional when classifier = `precomputed`. If
257+
Classification weights, optional when classifier is ``precomputed``. If
258258
not passed, it is assumed that the weights will be taken from a
259259
linear classifier fit between :math:`\mathbf{X}` and :math:`\mathbf{Y}`
260260
"""

src/skmatter/decomposition/_pcovr.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -88,9 +88,9 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
8888
range [0.0, infinity).
8989
9090
space: {'feature', 'sample', 'auto'}, default='auto'
91-
whether to compute the PCovR in `sample` or `feature` space.
92-
The default is = `sample` when :math:`{n_{samples} < n_{features}}`
93-
and `feature` when :math:`{n_{features} < n_{samples}}`
91+
whether to compute the PCovC in ``sample`` or ``feature`` space.
92+
The default is equal to ``sample`` when :math:`{n_{samples} < n_{features}}`
93+
and ``feature`` when :math:`{n_{features} < n_{samples}}`
9494
9595
regressor: {`Ridge`, `RidgeCV`, `LinearRegression`, `precomputed`}, default=None
9696
regressor for computing approximated :math:`{\mathbf{\hat{Y}}}`. The regressor
@@ -126,9 +126,9 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
126126
Must be of range [0.0, infinity).
127127
128128
space: {'feature', 'sample', 'auto'}, default='auto'
129-
whether to compute the PCovR in `sample` or `feature` space. Default = `sample`
130-
when :math:`{n_{samples} < n_{features}}` and `feature` when
131-
:math:`{n_{features} < n_{samples}}`
129+
whether to compute the PCovR in ``sample`` or ``feature`` space.
130+
The default is equal to ``sample`` when :math:`{n_{samples} < n_{features}}`
131+
and ``feature`` when :math:`{n_{features} < n_{samples}}`
132132
133133
n_components_ : int
134134
The estimated number of components, which equals the parameter n_components, or
@@ -227,7 +227,7 @@ def fit(self, X, Y, W=None):
227227
regressed form of the properties, :math:`{\mathbf{\hat{Y}}}`.
228228
229229
W : numpy.ndarray, shape (n_features, n_properties)
230-
Regression weights, optional when regressor = `precomputed`. If not
230+
Regression weights, optional when regressor is ``precomputed``. If not
231231
passed, it is assumed that `W = np.linalg.lstsq(X, Y, self.tol)[0]`
232232
"""
233233
X, Y = validate_data(self, X, Y, y_numeric=True, multi_output=True)

0 commit comments

Comments
 (0)