diff --git a/examples/regression/Ridge2FoldCVRegularization.py b/examples/regression/Ridge2FoldCVRegularization.py index b4c78cf63..cee2eebbb 100644 --- a/examples/regression/Ridge2FoldCVRegularization.py +++ b/examples/regression/Ridge2FoldCVRegularization.py @@ -203,12 +203,12 @@ def get_train_test_error(estimator): RidgeCV( alphas=alphas, cv=None, - store_cv_values=True, + store_cv_results=True, scoring=None, # uses by default mean squared error fit_intercept=False, ) .fit(X_train, y_train) - .cv_values_ + .cv_results_ ) results["sklearn LOO CV Tikhonov"]["MSE validation"] = np.mean( diff --git a/pyproject.toml b/pyproject.toml index 65b945518..e6f22d3af 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -38,7 +38,7 @@ classifiers = [ "Topic :: Scientific/Engineering", ] dependencies = [ - "scikit-learn >= 1.6, < 1.7", + "scikit-learn >= 1.7, < 1.8", "scipy >= 1.15", # explicit to adhere to scikit-learn dependencies ] dynamic = ["version"] diff --git a/src/skmatter/linear_model/_ridge.py b/src/skmatter/linear_model/_ridge.py index d16cce2ea..3819f286b 100644 --- a/src/skmatter/linear_model/_ridge.py +++ b/src/skmatter/linear_model/_ridge.py @@ -303,7 +303,7 @@ def _2fold_loss_tikhonov(alpha): return ((Vt.T[:, :n_alpha] / s[:n_alpha]) @ (U.T[:n_alpha] @ y)).T -class _IdentityRegressor: +class _IdentityRegressor(BaseEstimator): """Fake regressor which will directly output the prediction.""" def predict(self, y_predict): diff --git a/src/skmatter/sample_selection/_base.py b/src/skmatter/sample_selection/_base.py index 0abdca1fa..01d5fae8a 100644 --- a/src/skmatter/sample_selection/_base.py +++ b/src/skmatter/sample_selection/_base.py @@ -6,6 +6,7 @@ from scipy.interpolate import LinearNDInterpolator, interp1d from scipy.interpolate._interpnd import _ndim_coords_from_arrays from scipy.spatial import ConvexHull +from sklearn.base import BaseEstimator from sklearn.utils.validation import check_array, check_is_fitted, check_X_y from .._selection import _CUR, _FPS, _PCovCUR, _PCovFPS @@ -479,7 +480,7 @@ def _directional_distance(equations, points): return -orthogonal_distances / equations[:, :1].T -class DirectionalConvexHull: +class DirectionalConvexHull(BaseEstimator): """ Performs Sample Selection by constructing a Directional Convex Hull and determining the distance to the hull as outlined in the reference [dch]_.